A Comprehensive Symbolic Anal-

is of TLS 1.3 .
O UC San Diego

A Comprehensive Symbolic Analysis of TLS 1.3

Cas Cremers, Marko Horvat, Jonathan Hoyland, Sam Scott, Thyla van der Merwe

March 7, 2019

Baiyu Li
UC San Diego

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 1

|
Highlights
UC San Diego

Symbolic model and (semi) automated analysis of TLS 1.3
» The analysis covers all handshake modes of TLS 1.3
» Modular, flexible: OK with removal of 0-RTT

» Prove the majority of security requirements of TLS 1.3

> Secrecy of session keys

» Perfect forward secrecy of session keys

» Peer authentication

> Key compromise impersonation resistance

> Key agreement and uniqueness across handshakes

» Uncover security problems in applications that assumes TLS 1.3 has strong
auth guarantees
» Exhibiting the relation between specification and model: annotated

specification

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 2

[
TLS 1.3 review
UC San Diego

> TLS 1.3 specifies three key-exchange modes: DHE, PSK, and PSK coupled
with DHE

» Three post-handshake mechanisms covering traffic key updates,

post-handshake client authentication, and sending of new session tickets
(NST)

> Handshake protocol maintains a rolling transcript = hash(all handshake
messages)

A comprehensive analysis must consider interactions between
» KE modes
» handshake variants
» post-handshake mechanisms

A good complement of the computation security proofs, as the symbolic model
can be more easily formalized and machine checked.

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 3

Components in the analysis

vVvVvyyvyy

vy

>
>

UC San Diego

DHE: Ephemeral DH keys
PSK: No PFS
PSK with DHE: Has PFS with limited number of PKC operations
Group renegotiation: HelloRetryRequest
NST: Binds identity to a resumption-specific secret, can be used by client as
PSK
PSK binder: Binds the PSK to the handshake
Session resumption and PSK: Use a OOB key for a new session or an NST to
resume the session
0-RTT: Application must provide its own replay protection at the application
layer
Post-handshake client authentication:
» Server sends a CertificateRequest
» Client cannot be sure about its auth status
Key update
Key derivation: Two secret inputs: DHE and PSK

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 4

Security goals and properties

UC San Diego

The handshake protocol is intended to negotiate crypto keys via Authenticated
Key Exchange.

» independent keys to protect handshake messages and app data messages
A list of eight properties of the handshake protocol:
Establish the same session keys
Secrecy of the seccion keys
Peer authentication
Uniqueness of session keys
Downgrade protection (not modeled)
PFS

KCI resistance

© N o e

Protection of endpoint identities

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 5

.
The Tamarin prover with a symbolic model

UC San Diego

Tamarin is a tool to analyze security protocols in a symbolic model, with
Dolev-Yao-style active attackers

» Assume perfect crypto: An adversary learns an encrypted message only if he
knows the secret key

> Messages and operations are abstracted using terms
» A protocol is modeled as a labeled transition systems with states, where state
transitions are defined using rules with actions

» Properties are specified using equational theories and guarded first order logic
formulas. These can be either trace properties or observational equivalence
properties

» An imaginary active attacker who has complete control over the network and
can replay, insert, delay, delete and modify. Attacker can only perform actions
defined in the rules

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 6

.
The Tamarin prover

UC San Diego

Let's look at a simple protocol:

C—S: aenc(k, pkS)
C«+S: h(k)

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 7

.
The Tamarin prover

UC San Diego

Let's look at a simple protocol:

C—S: aenc(k, pkS)
C«+S: h(k)

> Specify this protocol

» Express its properties

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego

The Tamarin prover

UC San Diego

theory SimpleProtocol

, . begin
Let's look at a simple protocol:
C— S: aenc(k, ka) builtins: hashing
C—S: h(k) functions: senc/2, sdec/2
equations:

> Specify this protocol sdec(senc(x.1, x.2), x.2) = x.1
» Express its properties axiom one_ltk:
"A1l A x y #i #j.
((GenLtk(A, x) @ #i) &
(GenLtk(A, y) @ #j))
==> (#i = #j)"

rule ...
lemma ...
end

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 7

The Tamarin prover

UC San Diego
Rules are used to specify the protocol: Consider C — S: aenc(k, pkS)

[Fr (~k) 1 _ [Client_1($s, -k) }

IPk($S, pkS) J = L Out(aenc(~k, pkS))

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego

|
The Tamarin prover

UC San Diego

Rules are used to specify the protocol: Consider C — S: aenc(k, pkS)

Fr(-k) 1 _ [Client_1($s, -k)
IPk($S, pkS) J = L Out(aenc(~k, pkS))

» Terms model messages and identities:
» Constants: ’c’
» Variables: pkS
» Function applications: f(t1,...,tn)
» A constant or a variable may have a “sort” expressed with a prefix:
» Fresh names: ~k
» Public names: $A
» Temporal names: #i
> Messages: m

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 8

The Tamarin prover

UC San Diego

Rules are used to specify the protocol: Consider C — S: aenc(k, pkS)

Fr(-k) 1 _ [Client_1($s, -k)
IPk($S, pkS) J = L Out(aenc(~k, pkS))

» Facts are built from terms: Fr(~k), 'Pk($S, pkS)
» A fact can be linear or persistent

> A linear fact can be consumed only once

> A persistent fact can be consumed multiple times
» Some special facts:

> Fr(x): x is a fresh name and it is freshly generated

» In(x): x is an incoming message from the network

> Qut(x): x is an output message to the network

> X(x): x is known to the adversary

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego

|
The Tamarin prover

UC San Diego

Rules are used to specify the protocol: Consider C — S: aenc(k, pkS)

Fr(-k) 1 _ [Client_1($s, -k)
IPk($S, pkS) J L Out(aenc(~k, pkS))

> A rule has a name and three parts (sequences of facts):
> Premise
> Action «
» Conclusion «+— _—

> A rule defines how the system can transit from one state to another
» Facts in premise are consumed from the system state
» Facts in conclusion are added to the system state
» Facts in action are appended to trace

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 10

The Tamarin prover

UC San Diego

Rules are used to specify the protocol: Consider C — S: aenc(k, pkS)

Fr(-k) 1 _ [Client_1($s, -k)
IPk($S, pkS) J = L Out(aenc(~k, pkS))

This is written as:
rule Client_1:
[Fr(~k), 'Pk($S, pkS)]
-—>
[Client_1($S, ~k), Out(aenc(~k, pkS)) 1]

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 11

The Tamarin prover

UC San Diego

Rules are used to specify the protocol: Consider C — S: aenc(k, pkS)

Fr(-k) 1 _ [Client_1($s, -k)
IPk($S, pkS) J = L Out(aenc(~k, pkS))

Tamarin provides some builtin function symbols and theories
P> hashing: A function symbol h/1 and no equations
> asymmetric-encryption: Two function symbols aenc/2 and adec/2
adec(aenc(m, pk(sk)), sk) = m

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 12

The Tamarin prover

UC San Diego

A few more rules...

Fr(~1tk)

]

('Ltk ($A, ~1tk)
L IPk($A, pk(~1tk))

Client_1(S, k)
[In(h(k)) HSessKeyC(S, k)}—)O

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 13

The Tamarin prover

UC San Diego

Now to want to express properties about the system and prove them.

» Trace properties are used to express system behaviours

>

>
>
>
>
>

Using first-order logic with a sort for timepoints
Formulas are guarded using 3 and V
Usual logic operators ==>, &, |, not

f @ i expresses an action constraint at timepoint #i

Timepoints are ordered: can assert i < j and #i
Message terms can be compared with equality: x

j!

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego

14

The Tamarin prover

UC San Diego

Now to want to express properties about the system and prove them.

» Trace properties are used to express system behaviours
> Using first-order logic with a sort for timepoints

Formulas are guarded using 3 and V

Usual logic operators ==>, &, |, not

f @ i expresses an action constraint at timepoint #i

Timepoints are ordered: can assert i < j and #i = j!

y

» Observational equivalence is also possible, but with limited capability

>
>
>
>

» Message terms can be compared with equality: x

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego

14

.
The Tamarin prover

UC San Diego

Now to want to express properties about the system and prove them.

For example:

lemma Client_session_key_secrecy2:
"
A1l S k #i #j.
/* client has set up a session key ’k’ with a server’S’ */
(SessKeyC(S, k) @ #i
/* and the adversary knows ’k’ */
& K(k) @ #j
) ==
/* Then K must have performed a long-term key reveal on ’S’. x/
Ex #r. LtkReveal(S) @ r

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 15

The Tamarin prover

UC San Diego

Now to want to express properties about the system and prove them.

For example:

lemma Client_session_key_secrecy2:
n

A1l S k #i #j.
/* client has set up a session key ’k’ with a server’S’ */
(SessKeyC(S, k) @ #i
/* and the adversary knows ’k’ */
& K(k) @ #j
) ==
/* Then K must have performed a long-term key reveal on ’S’. x/
Ex #r. LtkReveal(S) @ r

To prove a lemma, we can let Tamarin try to prove it automatically, or by giving
instructions on how to solve the constraint problem.

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 15

.
A comprehensive model

UC San Diego

> A comprehensive symbolic model of TLS 1.3 is devied in the Tamarin’s
framework

» This covers all the possible interactions between each property

» The model closely matches the specification: an annotated TLS 1.3
specification

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 16

-
Thread model and security properties

UC San Diego

» An extension of the Dolve-Yao symbolic attacker
» The attacker can compromise

» Long-term keys of parties

» Pre-shared keys, whether created OOB or through NST
» DH values

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 17

Thread model and security properties

UC San Diego

Recall that there are eight required security properties:

1. Establish the same session keys
Secrecy of the seccion keys

Peer authentication

Uniqueness of session keys
Downgrade protection (not modeled)
PFS

KCI resistance

© NN

Protection of endpoint identities (not modeled)

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 18

.
Analysis results

UC San Diego

In general, the TLS 1.3 specification meets the required properties.
» A client and a server agrees on the secret session keys
» Session keys are unique across and within handshake instances
> PFS of session keys holds in suitable situations

» Authentication guarantees are satisfied in general

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 19

.
Analysis results

UC San Diego

In general, the TLS 1.3 specification meets the required properties.
» A client and a server agrees on the secret session keys
» Session keys are unique across and within handshake instances
> PFS of session keys holds in suitable situations

» Authentication guarantees are satisfied in general

Proofs are complicated...

» Multi-stage process: To break down the protocol models, sublemmas are used
to give hints to the Tamarin prover

» Uses heuristics to help the automated prover to quickly re-proving large
sections

» Still many manual proof efforts
> Model takes 10GB RAM, and takes about 100GB to compute the proof

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 19

A possible mismatch between client and server

view UC SanDiego

Some strong post-authentication guarantees are not met:

» Post-handshake authentication: Both parties should share a common view of
the session

» The analysis shows that: when the server asks for a post-handshake client
authentication, and the client responds, the client cannot be sure whether the
server considers the channel is mutually authenticated

» TLS 1.3 working group has decided to let the application level handle this
confirmation

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 20

A Comprehensive Symbolic Anal-

is of TLS 1.3 .
O UC San Diego

The end!

March 7, 2019 | A Comprehensive Symbolic Analysis of TLS 1.3 | UC San Diego 21

	The Tamarin prover and the symbolic model
	Verification results of TLS 1.3

