TLS 1.3 Stories from the Road & Some Analysis

TLS Crypto Seminar

February 21, 2019

Felix Günther UC San Diego

based on joint work with Benjamin Dowling, Marc Fischlin, Sogol Mazaheri, Douglas Stebila and discussions with many others

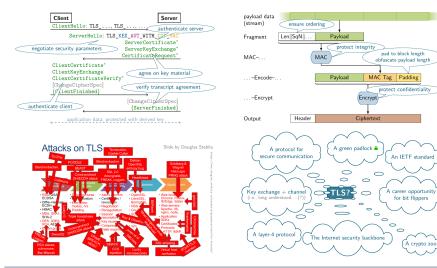
This Seminar, Part II

UC San Diego

Part II TLS 1.3

- ▶ The road to TLS 1.3 & its technical details.
- ▶ More analyses: understanding TLS 1.3's security and what drove design.

Schedule


Feb 21	TLS 1.3 [TLS13] & some security models [FG17,GM17]	Felix
Feb 28	Multiplexing channels [PS18]	Vivek
Mar 7	Symbolic Tamarin analysis [CHH+17]	Baiyu
Mar 14	Downgrade resilience [BBF+16]	Ruth

UC San Diego

The Road to TLS 1.3

Recap: TLS 1.2

UC San Diego

▶ IETF TLS WG begins in early 2014 with developing new TLS 1.3 version

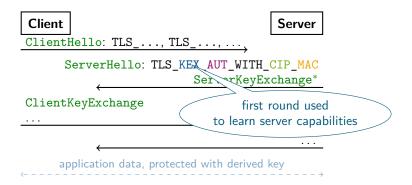
So... what would you change?

- **Clean up:** get rid of flawed and unused crypto & features
- Improve latency: for main handshake and repeated connections (while maintaining security)
- Improve privacy: hide as much of the handshake as possible
- Continuity: maintain interoperability with previous versions and support existing important use cases
- **Security Assurance (added later):** have supporting analyses for changes

UC San Diego

Clean up

- removed legacy and broken crypto
 - ► ciphers: (3)DES, RC4, ..., MtEE (CBC & generally) only AEAD remains
 - hash functions: MD5, SHA1
 - ► authentication: Kerberos, RSA PKCS#1v1.5 key transport
 - custom (EC)DHE groups
- removed broken features


quite some resistance from enterprises doing passive inspection

- compression
- renegotiation (but added key updates + late client auth)
- removed static RSA/DH: public-key crypto = forward secrecy
- clean key derivation based on Extract-then-Expand HKDF
- hardened negotiation of version/cipher suite against downgrades

Improve latency

▶ TLS 1.2 is slow: 2 round trips before client can send data

Improve latency

▶ TLS 1.2 is slow: 2 round trips before client can send data

► TLS 1.3: full handshake in 1 round trip

- feature reduction \rightarrow we always do (EC)DHE
- client speculatively sends several DH shares in supported groups
- server picks one, replies with its share, and key can be already derived
- **0-RTT handshake** when resuming previous connection
 - client+server keep shared resumption secret (PSK)
 - client derives a key from that and can immediately encrypt data
 - <u>but:</u> 0-RTT sacrifices certain security properties (will come to that)

Improve privacy

- ▶ TLS 1.2: complete handshake in the clear (incl. certificates, extensions)
- ► TLS 1.3: encrypts almost all handshake messages
 - derive separate key early to protect handshake messages
 - provides security against passive/active attackers (for server/client)

Continuity

- ▶ example: complex renegotiation only used for key updates + late client auth
 - just keep these features
- ▶ interoperability (idea): let ClientHello look like TLS <1.3
 - Well... we'll see.

TLS 1.3

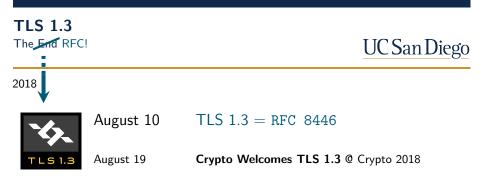
2

Timeline, Proposals, and Security Analyses

2014	April	draft-00	copy of TLS 1.2		
	July	draft-02	1-RTT, —custom DH, —compression —static RSA/DH, —non-AEAD		
	October	draft-03	ECC in base standard		
2015	January	draft-04	remove renegotiation	STANDARD UNDER CONSTRUCTION	
	March	draft-05			
			variant based on OPTLS 6] OPTLS: unified design. DH/PSK/(S15] draft-05/dh Analysis: first KE sec		
	July	draft-07	merging OPTLS (partially): key sch	edule, HKDF, 0-RT1	
	August	draft-08/9	9 deprecate MD5+SHA1, add RSA-PS	SS signatures	
		BL16] SLOTH: transcript collision attacks			
	,	$ \longrightarrow [JSS1] $	5] TLS 1.3 vs. PKCS#1v1.5 Encryptic	on: still bad	
	V		https://tools.ietf.or	g/html/draft-ietf-tls-tls13	

TLS 1.3

2015	October	draft-10
	December	draft-11 + downgrade protection, + late client auth, Ruth es
		[BBF+16] Downgrade Resilience: proposed harde, Mar 14
		\mapsto [Kra16] Post-Handshake Client Auth: formal treatmen.
2016	February	TRON (TLS 1.3 – Ready or Not?) @ NDSS 2016
		└→ [DFGS16] draft-10 Analysis: updated KE security analysis
		└→ [BMM+15] Record Protocol Analysis: via constructive crypto
		\longrightarrow [BBDL+16] miTLS: towards a verified implementation
		└→ [CHSM16] Tamarin Analysis: symbolic, identified attack
	May	: draft-13 restructure key schedule, only PSK-based 0-RTT
		\vdash [FG17] 0-RTT Analysis: PSK- & DH-based, security limitations
		"TRON2" TLS 1.3 Meetup @ IEEE S&P 2016
		ightarrow discussing key schedule, 0-RTT, early implementation results
		https://tools.ietf.org/html/draft-ietf-tls-tls13


LIC San Diego

TLS 1.3

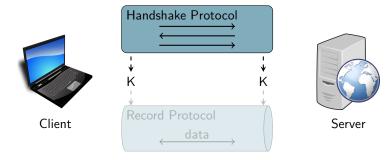
2016	Aug-Oct	draft-1517 lots of discussion around 0-RTT
	October	draft-18
		└→ [BBK17] ProVerif Analysis: tool-based formal analysis
		\longrightarrow [DLFK+17] miTLS: verified Record Protocol implementation
2017	April	TLS:DIV (Design, Implem. & Verif.) @ EuroS&P / Eurocrypt 2017
		\mapsto status update & still discussing 0-RTT \bigwedge .
	July	draft-21 + comment on 0-RTT security & Baiyu Mar 7
		\rightarrow [CHH+17] Tamarin Analysis: updated
	November	draft-22 "Implement changes for improved middlebox penetration"
		\mapsto [Ben18] TLS Ecosystem Woes: Why your Crypto isn't Real World yet
2018	March	draft-25 include record header in associated data of Vivek
		\rightarrow [PS18] Record Protocol Model: multiplexing char. Feb 28
		draft-2628 clarifications and cleanup

https://tools.ietf.org/html/draft-ietf-tls-tls13

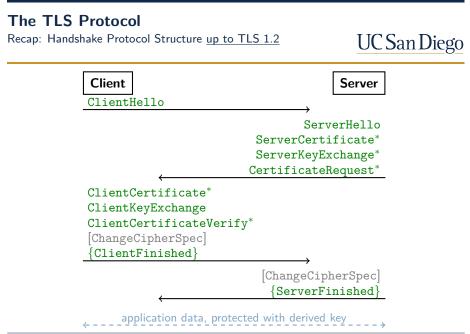
▶ already in: Firefox, Chrome, Cloudflare, Google, Facebook, OpenSSL, ...

- ▶ as of Sep 2018: ~5% @ Firefox, 2nd @ Cloudflare, ~50% @ Facebook
- strong interaction: TLS WG \leftrightarrow researchers \leftrightarrow engineers
 - high-paced draft progress (29 drafts in 4 years \approx one every 2nd month)
 - proactive rather than reactive standardization process (see [PM16])
- **vibrant research topic:** 20+ papers sharpening understanding and tools

UC San Diego

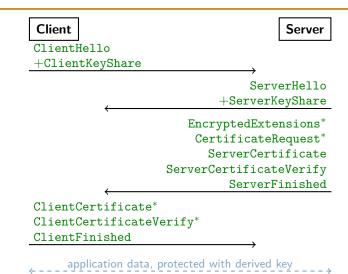

TLS 1.3 Handshake & Some Analysis

The TLS Protocol

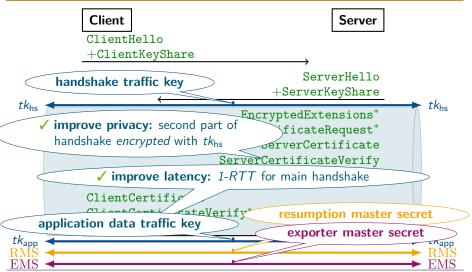

Recap (again overly simplified)

UC San Diego

- Handshake Protocol:
 negotiate security parameters ("cipher suite")
 - authenticate peers
 - establish key material for data protection



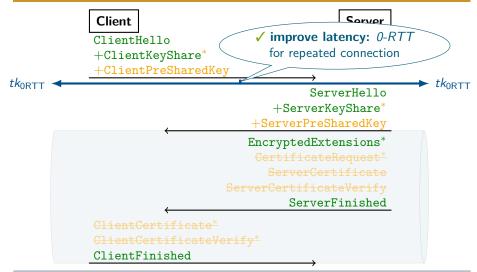
Record Protocol: protect data using key material from handshakeensuring confidentiality and integrity


The TLS 1.3 Handshake Full (EC)DHE Mode

UC San Diego

The TLS 1.3 Handshake Full (EC)DHE Mode

UC San Diego



February 21, 2019 | TLS 1.3 | TLS Crypto Seminar, Winter 2019 Quarter, UC San Diego

Felix Günther 17

The TLS 1.3 Handshake PSK / PSK-(EC)DHE Resumption Mode

UC San Diego

The TLS 1.3 Handshake

0.5-RTT and Post-Handshake Messages

UC San Diego

Additional features (which we won't cover here...):

- ▶ 0.5-RTT
 - server can already send data after its Finished message
 - client not yet authenticated, but can be done retroactively [Kra16]

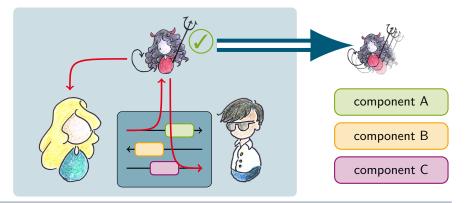
Post-Handshake Client Authentication

- server can ask client to authenticate even after handshake is over
- captures renegotiation functionality from \leq TLS 1.2
- again gives retroactive authentication [Kra16]

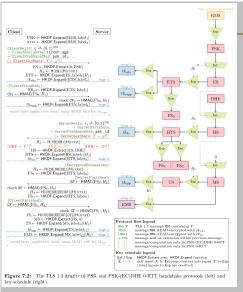
Key Updates

- both sides can initiate an update of the traffic key (post-handshake)
- ▶ next key is then derived from master secret in forward-secure manner [GM17]

TLS 1.3 Handshake Security

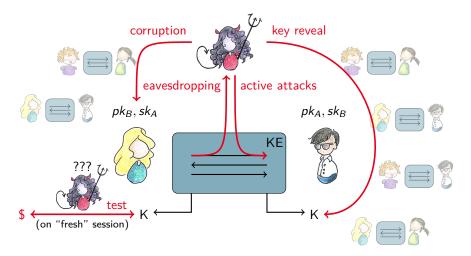

UC San Diego

- ► So: What kind of security do we expect for the TLS 1.3 handshake?
- secure key exchange (à la [BR94])
- here: provable, game-based, reductionist security
 - allows us to capture detailed cryptographic computations
 - get precise security bounds & crypto design recommendations
 - due to all the crypto details, security proofs can get complex
 - to handle complexity, we focus on one handshake mode at a time
 - and only look at the "cryptographic core"
 - symbolic analysis tools are better in analyzing interaction across modes
 - though somewhat coarser on the crypto details
 - ▶ to be sure the actual code is secure, you need a verified implementation


Cryptographic Security Models and the Provable Security Approach

1. describe abstract protocol 2. define security 3. reduce to assumptions

TLS 1.3 Handshake as an Abstract Protocol

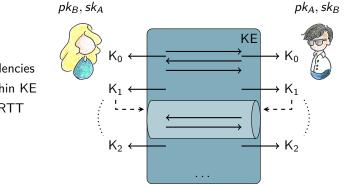

UC San Diego

can be done, but let's skip that for now...

Key Exchange Security

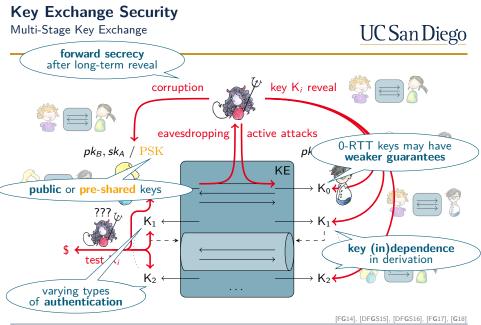
Recap: Classical Definition [BR94]

UC San Diego



Key Exchange Security

Novel Designs

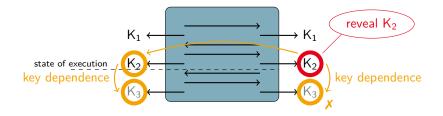

UC San Diego

- go beyond what classical models can capture
- ▶ e.g., Google QUIC, **TLS 1.3**, Signal, ...

multiple keys

- potential dependencies
- mixed usage within KE
- Iow-latency / 0-RTT

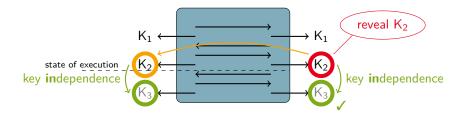
February 21, 2019 | TLS 1.3 | TLS Crypto Seminar, Winter 2019 Quarter, UC San Diego


Felix Günther 25

Extended Properties

(In)Dependence of Session Keys

- multi-stage \Rightarrow derived keys might build upon each other
- **key-dependent**: reveal K_i before K_{i+1} accepted may compromise K_{i+1}



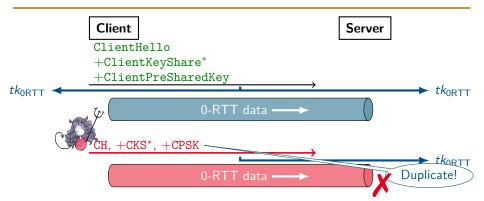
Extended Properties

(In)Dependence of Session Keys

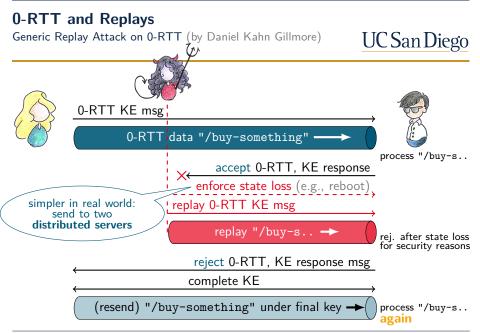
- multi-stage \Rightarrow derived keys might build upon each other
- **key-dependent**: reveal K_i before K_{i+1} accepted may compromise K_{i+1}
- **key-independent**: reveal of any K_i never harms any other K_{i+1}

Extended Properties

Forward Secrecy


- multi-stage \Rightarrow forward secrecy might kick in only at some stage j
- take this into account when handling corruptions
- non-forward-secret: all session keys compromised by corruption
- **stage**-*j*-forward-secret: accepted keys at stages $i \ge j$ remain secure

Levels of Authentication


- different stages/keys may hold different authentication properties
 - unauthenticated (no-one)
 - unilateral authentication (server-only)
 - mutual authentication (both)
- different types may run concurrently (TLS: adaptive client authentication)

0-RTT and Replays

UC San Diego

- allows client to send data without waiting for server reply
- but without server input, how does server know the request is fresh?
- adversary can replay ClientHello together with 0-RTT data
- idea: remember ClientHello identifier and reject duplicates

TLS does not provide inherent replay protection for 0-RTT data.

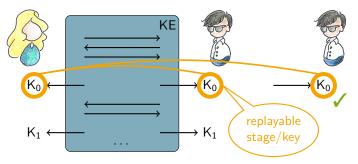
[Simple duplicates] can be prevented by sharing state to guarantee that the 0-RTT data is accepted at most once.

Servers SHOULD provide that level of replay safety by implementing one of the methods described in this section [...] [RFC 8446, Section 8]

suggested mechanisms

- ▶ single-use tickets: allow each RMS to be used only once (simplest)
- ClientHello recording: reject by unique identifier
- freshness checks: reject based on ClientHello time

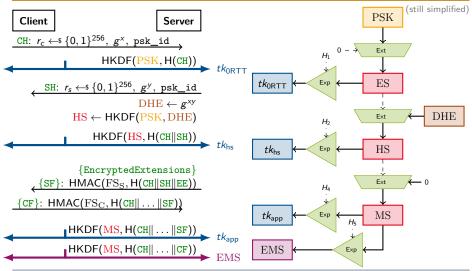
 \blacktriangleright "SHOULD" \rightarrow treat 0-RTT keys generally as replayable in analysis

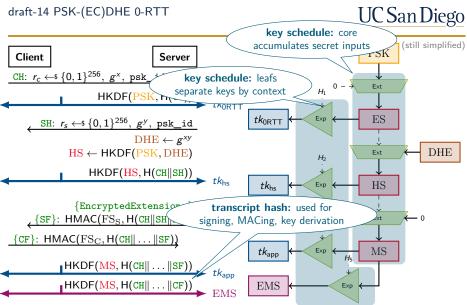

so, what security remains?

Extended Properties

UC San Diego

Replays

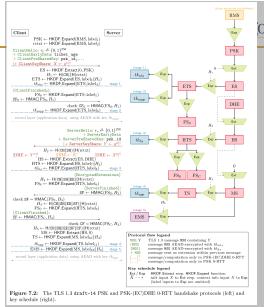

- some stages' keys may be replayable
- may be accepted multiple times, this shouldn't count as an attack
- but should still remain secret from adversary even if replayed


The TLS 1.3 Handshake

draft-14 PSK-(EC)DHE 0-RTT

UC San Diego

The TLS 1.3 Handshake



The TLS 1.3 Handshake draft-14 PSK-(EC)DHE 0-RTT

The full details...

- more intermediate keys (e.g., deriving MAC keys)
- a fifth key tk_{0hs} for 0-RTT handshake encryption (got dropped again later)

▶ and more...

TLS 1.3 Handshake Security

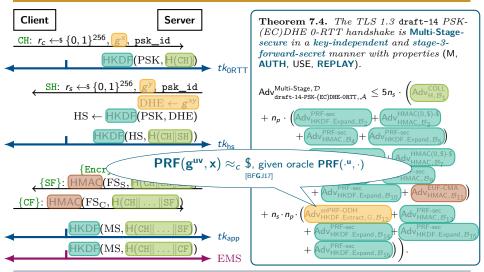
draft-14 PSK-(EC)DHE 0-RTT as Multi-Stage KE [FG17]

UC San Diego

The **TLS 1.3 PSK-(EC)DHE 0-RTT** handshake provides

- random-looking secret keys (tk_{0hs}, tk_{0RTT}, tk_{hs}, tk_{app}, EMS)
- forward secrecy for non–0-RTT keys
- ▶ mutual authentication wrt. PSK
- key independence
- replayable 0-RTT keys

assuming ...


Theorem 7.4. The TLS 1.3 draft-14 PSK-(EC)DHE 0-RTT handshake is **Multi-Stage**secure in a key-independent and stage-3forward-secret manner with properties (M, **AUTH**, USE, **REPLAY**).

$$\begin{split} \mathsf{Adv}_{\mathsf{draft-}\mathsf{14}\mathsf{+}\mathsf{PSK}\mathsf{-}(\mathsf{EC})\mathsf{DHE}\mathsf{-}\mathsf{ORTT},\mathcal{A}} &\leq 5n_{\mathsf{s}} \cdot \left(\mathsf{Adv}_{\mathsf{H},\mathcal{B}_{1}}^{\mathsf{COLL}} \right. \\ &+ n_{\mathsf{p}} \cdot \left(\mathsf{Adv}_{\mathsf{HKDF},\mathsf{Expand},\mathcal{B}_{2}}^{\mathsf{PRF-sec}} + \mathsf{Adv}_{\mathsf{HMAC}}^{\mathsf{PRF-sec}} \right. \\ &+ \mathsf{Adv}_{\mathsf{HMAC},\mathcal{B}_{4}}^{\mathsf{PRF-sec}} + \mathsf{Adv}_{\mathsf{HKDF},\mathsf{Expand},\mathcal{B}_{5}}^{\mathsf{PRF-sec}} \right) \\ &+ n_{\mathsf{s}} \cdot n_{\mathsf{p}} \cdot \left(\mathsf{Adv}_{\mathsf{HKDF},\mathsf{Expand},\mathcal{B}_{6}}^{\mathsf{PRF-sec}} + \mathsf{Adv}_{\mathsf{HMAC},\mathcal{B}_{7}}^{\mathsf{PRF-sec}} \right. \\ &+ \mathsf{Adv}_{\mathsf{HKDF},\mathsf{Expand},\mathcal{B}_{6}}^{\mathsf{PRF-sec}} + \mathsf{Adv}_{\mathsf{HMAC},\mathcal{B}_{7}}^{\mathsf{PRF-sec}} \\ &+ \mathsf{Adv}_{\mathsf{HKDF},\mathsf{Expand},\mathcal{B}_{10}}^{\mathsf{PRF-sec}} + \mathsf{Adv}_{\mathsf{HMAC},\mathcal{B}_{11}}^{\mathsf{PRF-sec}} \right. \\ &+ \mathsf{Adv}_{\mathsf{HKDF},\mathsf{Expand},\mathcal{B}_{10}}^{\mathsf{PRF-sec}} + \mathsf{Adv}_{\mathsf{HMAC},\mathcal{B}_{13}}^{\mathsf{PRF-sec}} \\ &+ \mathsf{Adv}_{\mathsf{HKDF},\mathsf{Expand},\mathcal{B}_{14}}^{\mathsf{PRF-sec}} + \mathsf{Adv}_{\mathsf{HKDF},\mathsf{Expand},\mathcal{B}_{15}}^{\mathsf{PRF-sec}} \\ &+ \mathsf{Adv}_{\mathsf{HKDF},\mathsf{Expand},\mathcal{B}_{14}}^{\mathsf{PRF-sec}} + \mathsf{Adv}_{\mathsf{HKDF},\mathsf{Expand},\mathcal{B}_{15}}^{\mathsf{PRF-sec}} \\ &+ \mathsf{Adv}_{\mathsf{HKDF},\mathsf{Expand},\mathcal{B}_{16}}^{\mathsf{PRF-sec}} \right) \right). \end{split}$$

TLS 1.3 Handshake Security

draft-14 PSK-(EC)DHE 0-RTT as Multi-Stage KE [FG17]

UC San Diego

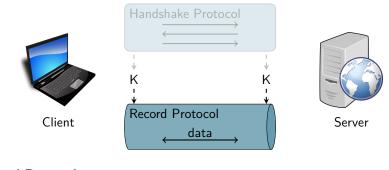
TLS 1.3 Handshake Security

In perspective

- cryptographic design of TLS 1.3 handshake is sound
- strong security results for main keys (both full and PSK handshakes)
- ► replays and lacking forward secrecy for 0-RTT are a (recognized) downside
- ▶ recall: focus on handshake modes in isolation, for draft-14 (and earlier)
- further analyses:
 - other computational analyses of sub-parts (e.g., post-handshake client auth)
 - tool-based/symbolic analyses up to full protocol and on multiple drafts
 - work-in-progress verified implementation
- ▶ jointly, these analyses give rise to confidence in TLS 1.3 handshake design
- ▶ still, doesn't mean there won't be any attacks (bets are on 0-RTT...)

UC San Diego

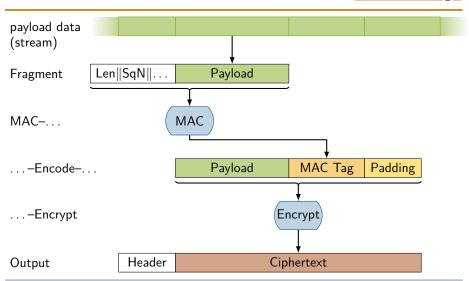
TLS 1.3 Record Protocol & Some Analysis


The TLS Protocol

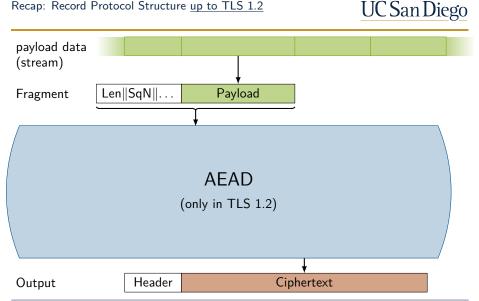
So... what about the Record Protocol?

UC San Diego

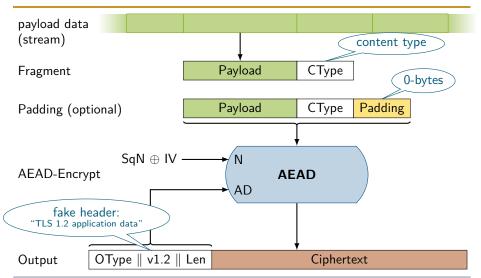
Handshake Protocol: negotiate security parameters ("cipher suite")


- authenticate peers
- establish key material for data protection

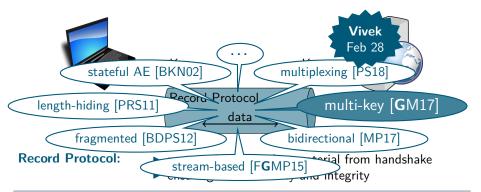
Record Protocol: protect data using key material from handshake
ensuring confidentiality and integrity


The TLS Protocol

Recap: Record Protocol Structure up to TLS 1.2

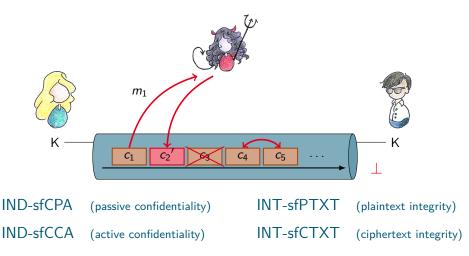

The TLS Protocol

Recap: Record Protocol Structure up to TLS 1.2


The TLS 1.3 Record Protocol

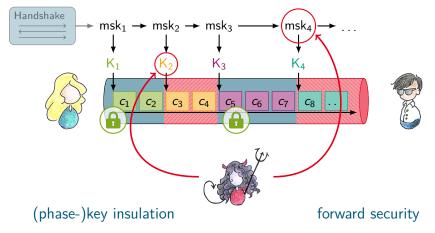
UC San Diego

TLS 1.3 Record Protocol Security

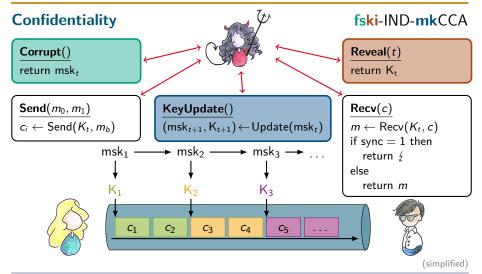

- AEAD-based design looks sound...
- but the crypto community hasn't really conclusively ventilated the question: What is a secure channel protocol?

Channel Security

Recap: Bellare, Kohno, Namprempre 2002 [BKN02]

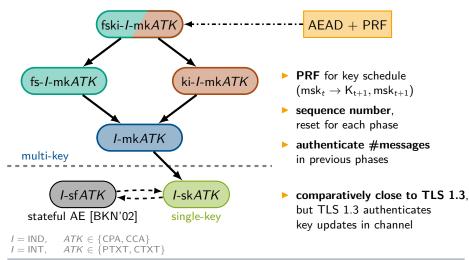


Multi-key Channels


UC San Diego

▶ keys updated during channel operation (e.g., TLS 1.3, Signal, ...)

Multi-key Channels


Security Model

Multi-key Channels

Security Hierarchy and Instantiation

UC San Diego

TLS 1.3 Stories from the Road & Some Analysis

Thank You!

TLS 1.3	j	
Feb 21	TLS 1.3 [TLS13] & some security models [FG17,GM17]	Felix
Feb 28	Multiplexing channels [PS18]	Vivek
Mar 7	Symbolic Tamarin analysis [CHH+17]	Baiyu
Mar 14	Downgrade resilience [BBF+16]	Ruth

References I

[BMM+15]	C. Badertscher, C. Matt, U. Maurer, P. Rogaway, and B. Tackmann. "Augmented Secure Channels and the Goal of the TLS 1.3 Record Layer". In: <i>ProvSec 2015</i> . Ed. by M. H. Au and A. Miyaji. Vol. 9451. LNCS. Springer, Heidelberg, Nov. 2015, pp. 85–104.
[BKN02]	M. Bellare, T. Kohno, and C. Namprempre. "Authenticated Encryption in SSH: Provably Fixing The SSH Binary Packet Protocol". In: <i>ACM CCS 02</i> . Ed. by V. Atluri. ACM Press, Nov. 2002, pp. 1–11.
[BR94]	M. Bellare and P. Rogaway. "Entity Authentication and Key Distribution". In: <i>CRYPTO'93</i> . Ed. by D. R. Stinson. Vol. 773. LNCS. Springer, Heidelberg, Aug. 1994, pp. 232–249.
[Ben18]	D. Benjamin. <i>TLS Ecosystem Woes: Why your Crypto isn't Real World yet</i> . Presented at the Real World Crypto Symposium 2018, https: //docs.google.com/presentation/d/1jqyTwZlTPD_xp4rTD4FmbsdKYWRHcUkN51fMeGQZQ_o/. 2018.
[BBDL+16]	B. Beurdouche, K. Bhargavan, A. Delignat-Lavaud, C. Fournet, S. Ishtiaq, M. Kohlweiss, J. Protzenko, N. Swamy, S. Zanella-Béguelin, and J. K. Zinzindohoué. <i>Towards a Provably Secure Implementation of TLS 1.3.</i> Presented at the TRON Workshop at NDSS 2016. 2016.
[BBK17]	K. Bhargavan, B. Blanchet, and N. Kobeissi. "Verified Models and Reference Implementations for the TLS 1.3 Standard Candidate". In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2017, pp. 483–502.
[BBF+16]	K. Bhargavan, C. Brzuska, C. Fournet, M. Green, M. Kohlweiss, and S. Z. Béguelin. "Downgrade Resilience in Key-Exchange Protocols". In: <i>2016 IEEE Symposium on Security and Privacy</i> . IEEE Computer Society Press, May 2016, pp. 506–525.

References II

K. Bhargavan and G. Leurent. "Transcript Collision Attacks: Breaking Authentication in TLS, IKE and SSH". In: <i>NDSS 2016</i> . The Internet Society, Feb. 2016.
A. Boldyreva, J. P. Degabriele, K. G. Paterson, and M. Stam. "Security of Symmetric Encryption in the Presence of Ciphertext Fragmentation". In: <i>EUROCRYPT 2012</i> . Ed. by D. Pointcheval and T. Johansson. Vol. 7237. LNCS. Springer, Heidelberg, Apr. 2012, pp. 682–699.
J. Brendel, M. Fischlin, F. Günther, and C. Janson. "PRF-ODH: Relations, Instantiations, and Impossibility Results". In: <i>CRYPTO 2017, Part III</i> . Ed. by J. Katz and H. Shacham. Vol. 10403. LNCS. Springer, Heidelberg, Aug. 2017, pp. 651–681.
C. Cremers, M. Horvat, J. Hoyland, S. Scott, and T. van der Merwe. "A Comprehensive Symbolic Analysis of TLS 1.3". In: <i>ACM CCS 17</i> . Ed. by B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu. ACM Press, 2017, pp. 1773–1788.
C. Cremers, M. Horvat, S. Scott, and T. van der Merwe. "Automated Analysis and Verification of TLS 1.3: 0-RTT, Resumption and Delayed Authentication". In: <i>2016 IEEE Symposium on Security and Privacy</i> . IEEE Computer Society Press, May 2016, pp. 470–485.
A. Delignat-Lavaud, C. Fournet, M. Kohlweiss, J. Protzenko, A. Rastogi, N. Swamy, S. Z. Béguelin, K. Bhargavan, J. Pan, and J. K. Zinzindohoue. "Implementing and Proving the TLS 1.3 Record Layer". In: 2017 IEEE Symposium on Security and Privacy. IEEE Computer Society Press, May 2017, pp. 463–482.

References III

[DFGS15]	B. Dowling, M. Fischlin, F. Günther, and D. Stebila. "A Cryptographic Analysis of the TLS 1.3 Handshake Protocol Candidates". In: <i>ACM CCS 15.</i> Ed. by I. Ray, N. Li, and C. Kruegel: ACM Press, Oct. 2015, pp. 1197–1210.
[DFGS16]	B. Dowling, M. Fischlin, F. Günther, and D. Stebila. A Cryptographic Analysis of the TLS 1.3 draft-10 Full and Pre-shared Key Handshake Protocol. Cryptology ePrint Archive, Report 2016/081. http://eprint.iacr.org/2016/081. 2016.
[FG14]	M. Fischlin and F. Günther. "Multi-Stage Key Exchange and the Case of Google's QUIC Protocol". In: ACM CCS 14. Ed. by GJ. Ahn, M. Yung, and N. Li. ACM Press, Nov. 2014, pp. 1193–1204.
[FG17]	M. Fischlin and F. Günther. "Replay Attacks on Zero Round-Trip Time: The Case of the TLS 1.3 Handshake Candidates". In: 2017 IEEE European Symposium on Security and Privacy, EuroS&P 2017. Paris, France: IEEE, 2017, pp. 60–75.
[FGMP15]	M. Fischlin, F. Günther, G. A. Marson, and K. G. Paterson. "Data Is a Stream: Security of Stream-Based Channels". In: <i>CRYPTO 2015, Part II</i> . Ed. by R. Gennaro and M. J. B. Robshaw. Vol. 9216. LNCS. Springer, Heidelberg, Aug. 2015, pp. 545–564.
[Gün18]	F. Günther. "Modeling Advanced Security Aspects of Key Exchange and Secure Channel Protocols". http://tuprints.ulb.tu-darmstadt.de/7162/. PhD thesis. Darmstadt, Germany: Technische Universität Darmstadt, 2018.
[GM17]	F. Günther and S. Mazaheri. "A Formal Treatment of Multi-key Channels". In: <i>CRYPTO 2017</i> , <i>Part III.</i> Ed. by J. Katz and H. Shacham. Vol. 10403. LNCS. Springer, Heidelberg, Aug. 2017, pp. 587–618.

References IV

[JSS15]	T. Jager, J. Schwenk, and J. Somorovsky. "On the Security of TLS 1.3 and QUIC Against Weaknesses in PKCS#1 v1.5 Encryption". In: <i>ACM CCS 15.</i> Ed. by I. Ray, N. Li, and C. Kruegel: ACM Press, Oct. 2015, pp. 1185–1196.
[Kra16]	H. Krawczyk. "A Unilateral-to-Mutual Authentication Compiler for Key Exchange (with Applications to Client Authentication in TLS 1.3)". In: <i>ACM CCS 16.</i> Ed. by E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and S. Halevi. ACM Press, Oct. 2016, pp. 1438–1450.
[KW16]	H. Krawczyk and H. Wee. "The OPTLS Protocol and TLS 1.3". In: 2016 IEEE European Symposium on Security and Privacy, EuroS&P 2016. Saarbrücken, Germany: IEEE, 2016, pp. 81–96.
[Mac17]	C. MacCárthaigh. <i>Security Review of TLS 1.3 0-RTT.</i> https://github.com/tlswg/tls13-spec/issues/1001. 2017.
[MP17]	G. A. Marson and B. Poettering. "Security Notions for Bidirectional Channels". In: IACR Trans. Symm. Cryptol. 2017.1 (2017), pp. 405–426.
[PM16]	K. G. Paterson and T. van der Merwe. "Reactive and Proactive Standardisation of TLS". In: Security Standardisation Research: Third International Conference (SSR 2016). Ed. by L. Chen, D. A. McGrew, and C. J. Mitchell. Vol. 10074. Lecture Notes in Computer Science. Gaithersburg, MD, USA: Springer, 2016, pp. 160–186.
[PRS11]	K. G. Paterson, T. Ristenpart, and T. Shrimpton. "Tag Size Does Matter: Attacks and Proofs for the TLS Record Protocol". In: <i>ASIACRYPT 2011</i> . Ed. by D. H. Lee and X. Wang. Vol. 7073. LNCS. Springer, Heidelberg, Dec. 2011, pp. 372–389.

References V

- [PS18] C. Patton and T. Shrimpton. "Partially Specified Channels: The TLS 1.3 Record Layer without Elision". In: ACM CCS 18. Ed. by D. Lie, M. Mannan, M. Backes, and X. Wang. ACM Press, Oct. 2018, pp. 1415–1428.
- [TLS13] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed Standard). RFC. Fremont, CA, USA: RFC Editor, Aug. 2018.