Security of TLS ≤1.2 The ACCE model

UC San Diego

TLS Crypto Seminar

February 7, 2019

Joseph Jaeger

UC San Diego

some slides & formatting stolen from Felix Günther

UC San Diego

Today's Plan

Goal

- What is the ACCE security model? Why was it needed for studying TLS?
- Dig into the details of the formalism.

Part I Background

- Stateful Length-Hiding Authenticated Encryption
- Authenticated Key Exchange

Part II ACCE Security Model

- Authenticated and Confidential Channel Establishment
- TLS 1.2 Security Results (Time Permitting)

UC San Diego

Background

TLS Components

UC San Diego

From the first lecture:

Secure Channel

Security Typically Desired:

- Handshake Protocol = Authenticated Key Exchange
- Record Protocol = Stateful Length Hiding Authenticated Encryption

Formalisms

UC San Diego

Formalisms based on:

On the Security of TLS-DHE in the Standard Model¹

Tibor Jager Horst Görtz Institute for IT Security Bochum, Germany tibor.jager@rub.de

> Sven Schäge² University College London United Kingdom s.schage@ucl.ac.uk

Florian Kohlar Horst Görtz Institute for IT Security Bochum, Germany florian.kohlar@rub.de

Jörg Schwenk Horst Görtz Institute for IT Security Bochum, Germany joerg.schwenk@rub.de

sLHAE Definition

Syntax

- $K \leftarrow sSE.Kg$
- $(st_e, st_d) \leftarrow SE.Init$
- $(C, \operatorname{st}_e) \leftarrow \operatorname{sSE.Enc}(K, \ell, H, m, \operatorname{st}_e) / |C| = \ell$
- $(M, \operatorname{st}_d) \leftarrow \operatorname{sE.Dec}(K, H, C, \operatorname{st}_d)$

sLHAE Definition

UC San Diego

Security

Game $G^{ae}_{A,SE}$	$ \operatorname{Enc}(M_0,M_1,\ell,H) $	Dec(C, H)
$b \leftarrow \{0, 1\}$	$u \leftarrow u + 1$	$v \leftarrow v + 1$
$u \leftarrow v \leftarrow 0$	$(C^0, \operatorname{st}^0_e) \leftarrow $ SE.Enc $(K, \ell, H, M_0, \operatorname{st}_e)$	If $b = 0$ then return \perp
K ←s SE.Kg	$(C^1, \operatorname{st}^1_e) \leftarrow sSE.Enc(K, \ell, H, M_1, \operatorname{st}_e)$	$(M, \operatorname{st}_d) \leftarrow SE.Dec(K, H, C, \operatorname{st}_d)$
$(st_e, st_d) \leftarrow SE.Init$	If $C^0 = \bot$ or $C^1 = \bot$ then return \bot	If $v > u$ or $C \neq C_v$ then $\cos \leftarrow$ true
$b' \leftarrow * \mathcal{A}^{Enc, Dec}$	$(C_u, \operatorname{st}_e) \leftarrow (C^b, \operatorname{st}_e^b)$	If not oos then return M
Return $b = b'$	Return C_u	Return \perp

Security Typically Desired:

All-in-one definition requiring left-right IND-CPA and INT-CTXT style security

Key Exchange Definition

UC San Diego

Previously

TLS Example

UC San Diego

UC San Diego

ACCE

Main Idea:

Squish encryption and key exchange security together into single notion.

Results

UC San Diego

On the Security of TLS-DHE in the Standard Model¹

Tibor Jager Horst Görtz Institute for IT Security Bochum, Germany tibor.jager@rub.de

> Sven Schäge² University College London United Kingdom s.schage@ucl.ac.uk

Florian Kohlar Horst Görtz Institute for IT Security Bochum, Germany florian.kohlar@rub.de

Jörg Schwenk Horst Görtz Institute for IT Security Bochum, Germany joerg.schwenk@rub.de

February 20, 2013

Main Result:

TLS-DHE is secure in this model

Results

UC San Diego

On the Security of the TLS Protocol: A Systematic Analysis*

Hugo Krawczyk, Kenneth G. Paterson**, and Hoeteck Wee***

Model:

Closely related to discussed ACCE model. No client authentication. No forward security.

Main Result:

TLS-RSA is secure in this model. (Under OW-PCA assumption.) TLS-DH is secure in this model. (Under PRF-ODH assumption.) TLS would be secure in this model with CCA secure encryption **Definition 1** (Matching conversations). We say that π_i^P has a matching conversation with $\pi_i^{P'}$ if

- either $P \in C$ and $P' \in S$, or $P \in S$ and $P' \in C$; and
- π_i^P accepts; and
- the transcripts at both π_i^P and $\pi_j^{P'}$ begin with the same three messages (CREQ, SRES, CRES).