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Overview

+ Motivation
« Partially specified channels
+ The TLS 1.3 Record Layer



Motivation

* Protocols are often only partially specified.

+ Standard:

« collection of implementations with a shared core set of behaviors

* Challenge for provable security

+ What is relevant to security?!



Muluplexing in TLS 1.3

# The TLS 1.3 Record Layer handles streams for three
distinct sub-protocols

+ handshake
+ alert

* application-data

* Each sub-protocol has side-effects on the sender and
receiver state, and thus could affect security



Stateful Authenticated Encryption [BKN02]

* Defined security notions of confidentiality and integrity
for stateful symmetric encryption

* Accounts for replay and out-of-order delivery attacks

+ Ciphertexts are atomic!



Stream-based Channels [FGMP15]

* TLS - provides a streaming interface for applications

“ Never promised to treat messages atomically!

* Fragmentation at the sender and receiver ends could
differ

« |[FGMP15] gives specifications and security notions for
stream-based channels



Stream-based Channels [FGMP15]
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(Correctness [FGMP15]

(sts0, Stro) < Init(1%)
(St‘/ga C) <_$ Send(StSa maf)

(stg, m) < Recv(stg, c)

« (Correctness

No matter how ciphertexts are fragmented at the sender side,
and re-fragmented at the receiver side, the returned message
stream is a prefix of the initial message stream
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Mulaplexing [Ps18]

+ Streams are of the form (M3, sc1), (M>, sc2), ...
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Partally Specified Channels

things that are mandated and explicitly described
|RS09]

* Standard = partial specification + additional details

everything else
“ Mux, Write, Read, Demux : tully specified

* The rest of the details are formalized as an oracle given
to each algorithm

In security games, queries made to the oracle are
serviced by the adversary



Execution Model
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Syntax
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Privacy Notions

¢ PRIV-SR

+ Send : allows adversary to provide the
sender with arbitrary message fragments
and stream contexts

* Recv : allows adversary to deliver arbitrary
ciphertext fragments to the receiver

¢ PRIV-S

+ PRIV-SR without access to the Recv oracle
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Privacy Notions

* Privacy is in terms of left-or-right indistinguishability of
ciphertexts

# PRIV-SR : must suppress the output of Recv in situations that
will give trivial distinguishing attacks

* These “situations” are when the channel is in-sync



Channel Synchronization

* Read : models the receiver side buffering and
defragmentation

v ¥

Sender Receiver

M_Mw: X ——Write Read Y |—]Dem'ua:]u__
Q Q

# Channel is in-sync as long as the ciphertext fragments Y
output by Read remain a prefix of the ciphertext stream
C transmitted by the sender



PRIV-SR Security Notion

Expcaob(A)
1 declare str S, Env, bool sync
> (Mu, Wr, Re, De) « Init()
3 sync < 1
1 b« AP ReY (var Eno)
, return b’

e

Send (M, sco, M1, scy)

o Lo + leak(é, Moy, SCO)
7 Ly < leak (4, My, scy)
» if Lo # L, then return (1, 1)
(X, H,a) & Muz®P (M,, sc,, var Mu)
10 (C,v) « Write®P (X, H, a, var Wr)
11 S« S| C
> return (C,~)

s

Recv(C)
3 (Y, H, o) « Read®P (C,var Re)
(M, sc,~y) « Demuz®P (Y, H, o, var De)

15 if sync and Y < S then

See STH Y M soc il

17 else sync «+ 0
: return (M, sc,y)

SD(I)
19 O « Ax(I,var Env); return O «

leak (¢, M, sc)
switch (/)
case lensc: return (|M|, sc)
case len: return (|M|,|sc|)
case none: return ¢

Advg;;‘j;“(A) — 9Py, [Expg;;‘jlj;f(A) =p — 1




Integrity Notions

< INT-CS

+ Requires that the channel (i.e. the ciphertext stream) should remain in-
Sync

* The adversary wins if it can make the out-of-sync Recv oracle output
a valid message fragment and context

+ INT-PS

* Requires that the plaintext streams carried by the channel should
remain in-sync

* The adversary wins if at any point in the game, the output plaintext
stream is not a prefix of the input plaintext stream



INT-CS and INT-PS Notions

Explnt cs (A)

declare str Env, S, bool sync, win
(Mu, Wr, Re, De) «— Init()
sync < 1; A7"HReY (var Enw)

return win

Send (M, sc)
(X, H,a) « Muz®P (M, sc,var Mu)
(C,v) « Write®P (X, H, o, var Wr)
S« §|C
return (C,~)

Recv(C)
(Y, H, o) « Read®P (C,var Re)
(M, sc,7) « Demuz®P (Y, H, a, var De)
if syncand Y <Sthen S« S%Y
else sync «+ 0

win < winV (M # L Asc# 1)

return (M, sc, )

SD(I)
O « Az(I,var Env); return O

Expmt pS(A)
declare str Env, S[], str R[], bool win
(Mu, Wr, Re, De) «— Init()
ASend,Recv (var E’I’L'U)

return win

Send (M, sc)
(X, H,a) « Muz>P (M, sc,var Mu)
(C,~) « WriteSP (X, H, a, var Wr)
Ssc  Ssc || M
return (C,v)

Recv(C)
(Y, H, o) 4 Read®P(C,var Re)
(M, sc,7) 4 Demuz®P (Y, H, a, var De)
if M # 1 and sc # 1 then
Rsc «+ R | M
if Rsc A Ssc then win « 1
return (M, sc,7)

SD (I)
O « Az(I,var Env); return O

Ad 1nt CS (./4) PI‘[EXpmt CS(A)

= 1] Ady = B4 PrExp. B4 |
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M_M'ua: X Write Read Y Demu:z:M
Q Q

+ PRIV-S A INT-GS 7=7 PRIV-SR x



Receiver-status Stmulatability

+ SIM-STAT

# This notion captures what the adversary learns from the

L)

receiver’s state by observing the status messages output

* Simulation-based game : for every efficient adversary, efficient
simulator such that real status messages are indistinguishable
from fake ones

Expgy 230 (A) Recv (C)
. declare str Env, S if b=1 then
> (Mu, Wr, Re, De) « Init() 10 (Y,H,a) « Read®P (C,var Re)
b« ATPDREY (var Eno) 11 (%,+,7) 4« Demuz®P (Y, H, a, var De)
. return b’ 12 else v « S°P(C, 9)
Send (M, sc) oY
(X, H,a) « MuzSP (M, sc,var Mu)
(C,7) « WriteSP (X, H, o, var Wr) SD(J)
S« S|C 14 0 « Ax(I,var Env); return O
return (C,~)




M_Mw: X ——{Write Read Y ‘—'DemuxM
Q Q

= PRIV-S A INT-CGS A SIM-STAT = PRIV-SR



The TLS 1.3 Record Layer

* Three client-server protocols executing concurrently
+ handshake : (re-)initialization of the channel
+ record . exchange application data

+ alert . close the channel

* Each flow is authenticated and encrypted as soon as
client and server exchange key material



TLS 1.3 Records

+ Plaintext records encode:

* content type
“ stream fragment
* length of fragment (< 214 bytes)

« legacy_record_version (for backward compatibility)

“ Streams of data are transformed into a sequence of

records

* Record boundaries are subject to certain rules



Record Boundary Rules

+ Handshake : no interleaving

+ Handshake : no spanning a key change

+ Handshake and Alert : no zero length messages

+ One alert per record



T'he Core Components

+ Which fully specified components can be altered
without affecting security?

+ Which unspecified or partially specified components are
critical to security?



Observations

* Record boundaries may leak the content type!

* Hiding the content and the type unachievable in general due to
the record boundary rules

+ Associated data is unauthenticated



Record Header Authentication

* Header : opague_type, legacy_record_version, length

+ What if the header is different than specified?
« length changed : invalid with high probability

« If the others are changed, it should be alright since it doesn’t
affect decryption - it is left optional in the spec

+ But this is an INT-CS attack!

+ We must authenticate the header

« To formalize that the value should not affect security,
we allow the specification details to choose the bits



Is the model too strong?

* One point of view is that this does not constitute a “real
attack” on privacy or integrity, since inputs to
decryption were not affected

* This is correct only if down-stream handling of the
plaintext is independent of these values



T'he Core Components

+ Stream Multiplexer

+ Transforms data streams into records
« Captures the non-cryptographic functionality

* Consider it to be partially specified

< AFKAD scheme

+ Nonce generator

+ Both these are core cryptographic functionalities

* Required to be fully specified



Paraally-specified Multiplexers

+ mPRIV-S

« Captures the adversary’s ability to discern information about the
inputs to Mux given its outputs

« Like the PRIV-S game earlier, except:
“ No Write oracle.

« Rather than (X, y), it returns y and the length of X

2 SIM-mSTAT

« Captures simulatability of the status message output by Demux.



AEAD Scheme

* HEncryption and Decryption are both deterministic

# Standard security notions are as follows:

+ PRIV

* Indistinguishability under Chosen Plaintext Attack

+ INT

* Integrity of Ciphertexts



Nonce Generator

* It consists of a pair of algorithms:
& Init() —> 1Q (randomized, initializes the state)
+ Next(n 9 ) = N (computes the next nonce and updates state)

“ Coll : outputs 1 if there is a nonce-reuse



Parually Specified Record Layer

o (PRIVAEAD) : (mPRIV—SMux) — (PRIV—SCH)

2 INTApaAD = INT-CScy

* The SIM-STAT security of the channel reduces to the
SIM-mSTAT security of the multiplexer and the
integrity of the AEAD scheme

* Can combine all these with the earlier result regarding
PRIV-5R security



Conclusion

* Partial specification of protocols is simple and flexible

“ Allows us to think formally about what the protocol
must get right, and what it may get wrong

« Helps point out which matters are security-critical



Thank You!



