TLS Crypto Seminar : 28 February 2019

. : Christopher Patton,
Tom Shrimpton
Parually Specified Channels ~ Tom Shrime
: s Presented by:
The TLS 1.3 Record Layer without elision A

UC San Diego

Overview

+ Motivation
« Partially specified channels
+ The TLS 1.3 Record Layer

Motivation

* Protocols are often only partially specified.

+ Standard:

« collection of implementations with a shared core set of behaviors

* Challenge for provable security

+ What is relevant to security?!

Muluplexing in TLS 1.3

The TLS 1.3 Record Layer handles streams for three
distinct sub-protocols

+ handshake
+ alert

* application-data

* Each sub-protocol has side-effects on the sender and
receiver state, and thus could affect security

Stateful Authenticated Encryption [BKN02]

* Defined security notions of confidentiality and integrity
for stateful symmetric encryption

* Accounts for replay and out-of-order delivery attacks

+ Ciphertexts are atomic!

Stream-based Channels [FGMP15]

* TLS - provides a streaming interface for applications

“ Never promised to treat messages atomically!

* Fragmentation at the sender and receiver ends could
differ

« |[FGMP15] gives specifications and security notions for
stream-based channels

Stream-based Channels [FGMP15]

m1 m4 ms‘ message stream
. 2
flush flag f e {0,1} No particular i/ o behavior
L 1
c1 cs ciphertext stream
di || & ch|cs ciphertext stream

My Mo my me message stream

(Correctness [FGMP15]

(sts0, Stro) < Init(1%)
(St‘/ga C) <_$ Send(StSa maf)

(stg, m) < Recv(stg, c)

« (Correctness

No matter how ciphertexts are fragmented at the sender side,
and re-fragmented at the receiver side, the returned message
stream is a prefix of the initial message stream

kell, - d = et e — |mjl,.. 3 < |m < [m

1€{0}U{j: f; =1} everything up to last flush

Mulaplexing [Ps18]

+ Streams are of the form (M3, sc1), (M>, sc2), ...

Mux Read
= o
o -

Wrrite Demux

Partally Specified Channels

things that are mandated and explicitly described
|RS09]

* Standard = partial specification + additional details

everything else
“ Mux, Write, Read, Demux : tully specified

* The rest of the details are formalized as an oracle given
to each algorithm

In security games, queries made to the oracle are
serviced by the adversary

Execution Model

Send

iAIhmd

Recv

J]Wﬂm
N\

S

"Wﬁﬁe

0“-
—

Demux

| SD [

Syntax

plaintext fragment

f)l

Sender

M__Mu:z:

S)

S T »d
|

Write

context

f}l
Receiver
I—
Read Y Demua:M_
) —
SC et
. a

ciphertext fragment

Init() = (Mu, Wr, Re, De)

Muz® (M, sc, Mu) — (X, H, a)
Write® (X, H,o, Wr) = (C,)

Reond (€ Rey > (Y H o)
DemuxO(Y, H,a,De) — (M, sc,7)

Privacy Notions

¢ PRIV-SR

+ Send : allows adversary to provide the
sender with arbitrary message fragments
and stream contexts

* Recv : allows adversary to deliver arbitrary
ciphertext fragments to the receiver

¢ PRIV-S

+ PRIV-SR without access to the Recv oracle

Send

Aj

Recv

Send

Aj

| Write

Muzx

N\
\

4
J \

1 As

SD

As

Privacy Notions

* Privacy is in terms of left-or-right indistinguishability of
ciphertexts

PRIV-SR : must suppress the output of Recv in situations that
will give trivial distinguishing attacks

* These “situations” are when the channel is in-sync

Channel Synchronization

* Read : models the receiver side buffering and
defragmentation

v ¥

Sender Receiver

M_Mw: X ——Write Read Y |—]Dem'ua:]u__
Q Q

Channel is in-sync as long as the ciphertext fragments Y
output by Read remain a prefix of the ciphertext stream
C transmitted by the sender

PRIV-SR Security Notion

Expcaob(A)
1 declare str S, Env, bool sync
> (Mu, Wr, Re, De) « Init()
3 sync < 1
1 b« AP ReY (var Eno)
, return b’

e

Send (M, sco, M1, scy)

o Lo + leak(é, Moy, SCO)
7 Ly < leak (4, My, scy)
» if Lo # L, then return (1, 1)
(X, H,a) & Muz®P (M,, sc,, var Mu)
10 (C,v) « Write®P (X, H, a, var Wr)
11 S« S| C
> return (C,~)

s

Recv(C)
3 (Y, H, o) « Read®P (C,var Re)
(M, sc,~y) « Demuz®P (Y, H, o, var De)

15 if sync and Y < S then

See STH Y M soc il

17 else sync «+ 0
: return (M, sc,y)

SD(I)
19 O « Ax(I,var Env); return O «

leak (¢, M, sc)
switch (/)
case lensc: return (|M|, sc)
case len: return (|M|,|sc|)
case none: return ¢

Advg;;‘j;“(A) — 9Py, [Expg;;‘jlj;f(A) =p — 1

Integrity Notions

< INT-CS

+ Requires that the channel (i.e. the ciphertext stream) should remain in-
Sync

* The adversary wins if it can make the out-of-sync Recv oracle output
a valid message fragment and context

+ INT-PS

* Requires that the plaintext streams carried by the channel should
remain in-sync

* The adversary wins if at any point in the game, the output plaintext
stream is not a prefix of the input plaintext stream

INT-CS and INT-PS Notions

Explnt cs (A)

declare str Env, S, bool sync, win
(Mu, Wr, Re, De) «— Init()
sync < 1; A7"HReY (var Enw)

return win

Send (M, sc)
(X, H,a) « Muz®P (M, sc,var Mu)
(C,v) « Write®P (X, H, o, var Wr)
S« §|C
return (C,~)

Recv(C)
(Y, H, o) « Read®P (C,var Re)
(M, sc,7) « Demuz®P (Y, H, a, var De)
if syncand Y <Sthen S« S%Y
else sync «+ 0

win < winV (M # L Asc# 1)

return (M, sc,)

SD(I)
O « Az(I,var Env); return O

Expmt pS(A)
declare str Env, S[], str R[], bool win
(Mu, Wr, Re, De) «— Init()
ASend,Recv (var E’I’L'U)

return win

Send (M, sc)
(X, H,a) « Muz>P (M, sc,var Mu)
(C,~) « WriteSP (X, H, a, var Wr)
Ssc Ssc || M
return (C,v)

Recv(C)
(Y, H, o) 4 Read®P(C,var Re)
(M, sc,7) 4 Demuz®P (Y, H, a, var De)
if M # 1 and sc # 1 then
Rsc «+ R | M
if Rsc A Ssc then win « 1
return (M, sc,7)

SD (I)
O « Az(I,var Env); return O

Ad 1nt CS (./4) PI‘[EXpmt CS(A)

= 1] Ady = B4 PrExp. B4 |

Sender Receiver
I— ' —
M_M'ua: X Write Read Y Demu:z:M
Q Q

+ PRIV-S A INT-GS 7=7 PRIV-SR x

Receiver-status Stmulatability

+ SIM-STAT

This notion captures what the adversary learns from the

L)

receiver’s state by observing the status messages output

* Simulation-based game : for every efficient adversary, efficient
simulator such that real status messages are indistinguishable
from fake ones

Expgy 230 (A) Recv (C)
. declare str Env, S if b=1 then
> (Mu, Wr, Re, De) « Init() 10 (Y,H,a) « Read®P (C,var Re)
b« ATPDREY (var Eno) 11 (%,+,7) 4« Demuz®P (Y, H, a, var De)
. return b’ 12 else v « S°P(C, 9)
Send (M, sc) oY
(X, H,a) « MuzSP (M, sc,var Mu)
(C,7) « WriteSP (X, H, o, var Wr) SD(J)
S« S|C 14 0 « Ax(I,var Env); return O
return (C,~)

M_Mw: X ——{Write Read Y ‘—'DemuxM
Q Q

= PRIV-S A INT-CGS A SIM-STAT = PRIV-SR

The TLS 1.3 Record Layer

* Three client-server protocols executing concurrently
+ handshake : (re-)initialization of the channel
+ record . exchange application data

+ alert . close the channel

* Each flow is authenticated and encrypted as soon as
client and server exchange key material

TLS 1.3 Records

+ Plaintext records encode:

* content type
“ stream fragment
* length of fragment (< 214 bytes)

« legacy_record_version (for backward compatibility)

“ Streams of data are transformed into a sequence of

records

* Record boundaries are subject to certain rules

Record Boundary Rules

+ Handshake : no interleaving

+ Handshake : no spanning a key change

+ Handshake and Alert : no zero length messages

+ One alert per record

T'he Core Components

+ Which fully specified components can be altered
without affecting security?

+ Which unspecified or partially specified components are
critical to security?

Observations

* Record boundaries may leak the content type!

* Hiding the content and the type unachievable in general due to
the record boundary rules

+ Associated data is unauthenticated

Record Header Authentication

* Header : opague_type, legacy_record_version, length

+ What if the header is different than specified?
« length changed : invalid with high probability

« If the others are changed, it should be alright since it doesn’t
affect decryption - it is left optional in the spec

+ But this is an INT-CS attack!

+ We must authenticate the header

« To formalize that the value should not affect security,
we allow the specification details to choose the bits

Is the model too strong?

* One point of view is that this does not constitute a “real
attack” on privacy or integrity, since inputs to
decryption were not affected

* This is correct only if down-stream handling of the
plaintext is independent of these values

T'he Core Components

+ Stream Multiplexer

+ Transforms data streams into records
« Captures the non-cryptographic functionality

* Consider it to be partially specified

< AFKAD scheme

+ Nonce generator

+ Both these are core cryptographic functionalities

* Required to be fully specified

Paraally-specified Multiplexers

+ mPRIV-S

« Captures the adversary’s ability to discern information about the
inputs to Mux given its outputs

« Like the PRIV-S game earlier, except:
“ No Write oracle.

« Rather than (X, y), it returns y and the length of X

2 SIM-mSTAT

« Captures simulatability of the status message output by Demux.

AEAD Scheme

* HEncryption and Decryption are both deterministic

Standard security notions are as follows:

+ PRIV

* Indistinguishability under Chosen Plaintext Attack

+ INT

* Integrity of Ciphertexts

Nonce Generator

* It consists of a pair of algorithms:
& Init() —> 1Q (randomized, initializes the state)
+ Next(n 9) = N (computes the next nonce and updates state)

“ Coll : outputs 1 if there is a nonce-reuse

Parually Specified Record Layer

o (PRIVAEAD) : (mPRIV—SMux) — (PRIV—SCH)

2 INTApaAD = INT-CScy

* The SIM-STAT security of the channel reduces to the
SIM-mSTAT security of the multiplexer and the
integrity of the AEAD scheme

* Can combine all these with the earlier result regarding
PRIV-5R security

Conclusion

* Partial specification of protocols is simple and flexible

“ Allows us to think formally about what the protocol
must get right, and what it may get wrong

« Helps point out which matters are security-critical

Thank You!

