
TLS Crypto Seminar : 28 February 2019

Partially Specified Channels
The TLS 1.3 Record Layer without elision

Christopher Patton,
Tom Shrimpton
CCS 2018

Presented by:
Vivek Arte

Overview

❖ Motivation

❖ Partially specified channels

❖ The TLS 1.3 Record Layer

Motivation

❖ Protocols are often only partially specified.

❖ Standard:
❖ collection of implementations with a shared core set of behaviors

❖ Challenge for provable security
❖ What is relevant to security?!

Multiplexing in TLS 1.3
❖ The TLS 1.3 Record Layer handles streams for three

distinct sub-protocols
❖ handshake

❖ alert

❖ application-data

❖ Each sub-protocol has side-effects on the sender and
receiver state, and thus could affect security

Stateful Authenticated Encryption [BKN02]

❖ Defined security notions of confidentiality and integrity
for stateful symmetric encryption

❖ Accounts for replay and out-of-order delivery attacks

❖ Ciphertexts are atomic!

Stream-based Channels [FGMP15]

❖ TLS - provides a streaming interface for applications
❖ Never promised to treat messages atomically!

❖ Fragmentation at the sender and receiver ends could
differ

❖ [FGMP15] gives specifications and security notions for
stream-based channels

Stream-based Channels [FGMP15]

message stream

ciphertext stream

ciphertext stream

message stream

No particular i/o behavior flush flag f ∈ {0,1}

Correctness [FGMP15]

❖ Correctness
❖ No matter how ciphertexts are fragmented at the sender side,

and re-fragmented at the receiver side, the returned message
stream is a prefix of the initial message stream

(𝗌𝗍S,0, 𝗌𝗍R,0) ←$ 𝖨𝗇𝗂𝗍(1λ)

(𝗌𝗍′�
S, c) ←$ 𝖲𝖾𝗇𝖽(𝗌𝗍S, m, f)

(𝗌𝗍′�
R, m) ←$ 𝖱𝖾𝖼𝗏(𝗌𝗍R, c)

everything up to last flushi 2 {0} [{j : fj = 1}

Multiplexing [PS18]

❖ Streams are of the form (M1, sc1), (M2, sc2), …

Send Receive

Mux

Write Demux

Read

Partially Specified Channels

❖ Standard = partial specification + additional details

❖ Mux, Write, Read, Demux : fully specified

❖ The rest of the details are formalized as an oracle given
to each algorithm

things that are mandated and explicitly described

everything else

[RS09]

In security games, queries made to the oracle are
serviced by the adversary

Execution Model

Syntax

Init() ! (Mu,Wr,Re,De)

Mux
O(M, sc,Mu) ! (X,H,↵)

Write
O(X,H,↵,Wr) ! (C, �)

Read
O(C,Re) ! (Y,H,↵)

Demux
O(Y,H,↵, De) ! (M, sc, �)

ciphertext fragment

plaintext fragment

context

Privacy Notions
❖ PRIV-SR

❖ Send : allows adversary to provide the
sender with arbitrary message fragments
and stream contexts

❖ Recv : allows adversary to deliver arbitrary
ciphertext fragments to the receiver

❖ PRIV-S
❖ PRIV-SR without access to the Recv oracle

Privacy Notions

❖ Privacy is in terms of left-or-right indistinguishability of
ciphertexts
❖ PRIV-SR : must suppress the output of Recv in situations that

will give trivial distinguishing attacks

❖ These “situations” are when the channel is in-sync

Channel Synchronization

❖ Read : models the receiver side buffering and
defragmentation

❖ Channel is in-sync as long as the ciphertext fragments Y
output by Read remain a prefix of the ciphertext stream
C transmitted by the sender

PRIV-SR Security Notion

Advpriv�sr
CH,l (A) = 2Prb[Exppriv�sr

CH,l,b (A) = b]� 1

Integrity Notions
❖ INT-CS

❖ Requires that the channel (i.e. the ciphertext stream) should remain in-
sync

❖ The adversary wins if it can make the out-of-sync Recv oracle output
a valid message fragment and context

❖ INT-PS
❖ Requires that the plaintext streams carried by the channel should

remain in-sync

❖ The adversary wins if at any point in the game, the output plaintext
stream is not a prefix of the input plaintext stream

INT-CS and INT-PS Notions

Advint-ps
CH

(A) = Pr[Expint-ps
CH

(A) = 1]Advint-cs
CH

(A) = Pr[Expint-cs
CH

(A) = 1]

❖ PRIV-S ^ INT-CS ?⟹? PRIV-SR

Receiver-status Simulatability

❖ SIM-STAT
❖ This notion captures what the adversary learns from the

receiver’s state by observing the status messages output

❖ Simulation-based game : for every efficient adversary, efficient
simulator such that real status messages are indistinguishable
from fake ones

❖ PRIV-S ^ INT-CS ^ SIM-STAT ⟹ PRIV-SR

The TLS 1.3 Record Layer

❖ Three client-server protocols executing concurrently
❖ handshake : (re-)initialization of the channel

❖ record : exchange application data

❖ alert : close the channel

❖ Each flow is authenticated and encrypted as soon as
client and server exchange key material

TLS 1.3 Records

❖ Plaintext records encode:
❖ content type

❖ stream fragment

❖ length of fragment (< 214 bytes)

❖ legacy_record_version (for backward compatibility)

❖ Streams of data are transformed into a sequence of
records

❖ Record boundaries are subject to certain rules

Record Boundary Rules

❖ Handshake : no interleaving

❖ Handshake : no spanning a key change

❖ Handshake and Alert : no zero length messages

❖ One alert per record

The Core Components

❖ Which fully specified components can be altered
without affecting security?

❖ Which unspecified or partially specified components are
critical to security?

Observations

❖ Record boundaries may leak the content type!
❖ Hiding the content and the type unachievable in general due to

the record boundary rules

❖ Associated data is unauthenticated

Record Header Authentication
❖ Header : opaque_type, legacy_record_version, length

❖ What if the header is different than specified?
❖ length changed : invalid with high probability

❖ If the others are changed, it should be alright since it doesn’t
affect decryption - it is left optional in the spec

❖ But this is an INT-CS attack!

❖ We must authenticate the header

❖ To formalize that the value should not affect security,
we allow the specification details to choose the bits

Is the model too strong?

❖ One point of view is that this does not constitute a “real
attack” on privacy or integrity, since inputs to
decryption were not affected

❖ This is correct only if down-stream handling of the
plaintext is independent of these values

The Core Components

❖ Stream Multiplexer
❖ Transforms data streams into records

❖ Captures the non-cryptographic functionality

❖ Consider it to be partially specified

❖ AEAD scheme
❖ Nonce generator

❖ Both these are core cryptographic functionalities

❖ Required to be fully specified

Partially-specified Multiplexers

❖ mPRIV-S
❖ Captures the adversary’s ability to discern information about the

inputs to Mux given its outputs

❖ Like the PRIV-S game earlier, except:

❖ No Write oracle.

❖ Rather than (X, 𝛾), it returns 𝛾 and the length of X

❖ SIM-mSTAT
❖ Captures simulatability of the status message output by Demux.

AEAD Scheme

❖ Encryption and Decryption are both deterministic

❖ Standard security notions are as follows:

❖ PRIV
❖ Indistinguishability under Chosen Plaintext Attack

❖ INT
❖ Integrity of Ciphertexts

Nonce Generator

❖ It consists of a pair of algorithms:

❖ Init() → ng (randomized, initializes the state)

❖ Next(ng) → N (computes the next nonce and updates state)

❖ Coll : outputs 1 if there is a nonce-reuse

Partially Specified Record Layer

❖ (PRIVAEAD) ^ (mPRIV-SMux) ⟹ (PRIV-SCH)

❖ INTAEAD ⟹ INT-CSCH

❖ The SIM-STAT security of the channel reduces to the
SIM-mSTAT security of the multiplexer and the
integrity of the AEAD scheme

❖ Can combine all these with the earlier result regarding
PRIV-SR security

Conclusion

❖ Partial specification of protocols is simple and flexible

❖ Allows us to think formally about what the protocol
must get right, and what it may get wrong

❖ Helps point out which matters are security-critical

Thank You!

