
Multi-Stage Key Exchange
and the Case of Google’s QUIC Protocol

Marc Fischlin and Felix Günther
Technische Universität Darmstadt, Germany

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 1

Key Exchange
so far. . .

pkB , skA pkA, skB

KE

K K

eavesdropping active attacks

corruption key reveal

test
$

???
BR ’93

Channel

BFWW @CCS’11

secure composition

Thanks to Giorgia Azzurra Marson for the drawings.
November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 2

But what if. . . ?

pkB , skA pkA, skB

KE

K1 K1

K2 K2

. . .

Channel(K1)

Channel(K2)

“multi-stage KE”

I key exchange establishes more than one key?
I . . . even uses the intermediary keys within the key exchange or channel?
I not covered by KE models so far

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 3

Should we care?

I QUIC (“Quick UDP Internet Connections”, Google 2013)
I “low-latency transport protocol with security equivalent to TLS”
I Diffie–Hellman-based key agreement
I aims at 0-RTT, i.e., immediately encrypts under intermediate key K1
I later rekeys to forward-secure K2
I intermediate key K1 used to establish K2 (i.e., in KE part)

Client C Server S
knows server’s pkS skS

ephemeral eskC , epkC
K1 = DH(eskC , pkS)

K1 = DH(epkC , skS)
ephemeral eskS , epkS
K2 = DH(epkC , eskS)

K2 = DH(eskC , epkS)

epkC
{data}K1

{epkS}K1

{data}K2

Stage 1

Stage 2

I TLS with session resumption

I client and server already established session and hold master key
I client resumes session later
I new session key is derived using (old) master key and fresh nonces
I can also be though of as a multi-stage key exchange (keeps state)

I related: TLS renegotiation considered as phases (GKS @ CCS’13)
but renegotiation is new key exchange, not reusing the master key

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 4

Should we care?

I QUIC (“Quick UDP Internet Connections”, Google 2013)
I “low-latency transport protocol with security equivalent to TLS”
I Diffie–Hellman-based key agreement
I aims at 0-RTT, i.e., immediately encrypts under intermediate key K1
I later rekeys to forward-secure K2
I intermediate key K1 used to establish K2 (i.e., in KE part)

Client C Server S
knows server’s pkS skS

ephemeral eskC , epkC
K1 = DH(eskC , pkS)

K1 = DH(epkC , skS)
ephemeral eskS , epkS
K2 = DH(epkC , eskS)

K2 = DH(eskC , epkS)

epkC
{data}K1

{epkS}K1

{data}K2

Stage 1

Stage 2

I TLS with session resumption
I client and server already established session and hold master key
I client resumes session later
I new session key is derived using (old) master key and fresh nonces
I can also be though of as a multi-stage key exchange (keeps state)

I related: TLS renegotiation considered as phases (GKS @ CCS’13)
but renegotiation is new key exchange, not reusing the master key

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 4

Model for Multi-Stage Key Exchange

pkB , skA pkA, skB

KE

K1 K1

K2 K2. . .

eavesdropping active attacks

corruption key Ki reveal

test Ki
$

???

That’s it?

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 5

Model for Multi-Stage Key Exchange

Security Aspects to consider
I (Session-)Key Dependence

I multi-stage⇒ derived keys might build upon each other
I we have to disallow trivial reveal queries

ex: QUIC

Client C Server S
ephemeral eskC , epkC
K1 = DH(eskC , pkS) K1 = DH(epkC , skS)

ephemeral eskS , epkS
K2 = DH(eskC , epkS) K2 = DH(epkC , eskS)

epkC

{epkS}K1

disclosure of K1 compromises K2

I key-dependent KE: disclosure of Ki before acceptance of Ki+1 compromises Ki+1
I key-independent KE: disclosure of Ki before acceptance of Ki+1 without harm

I Note: revealing Ki after acceptance of Ki+1 is okay (even with testing Ki+1)

state of execution

K1 K1

K2 K2

K3 K3

reveal K2

key dependence key dependence

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 6

Model for Multi-Stage Key Exchange

Security Aspects to consider
I (Session-)Key Dependence

I multi-stage⇒ derived keys might build upon each other
I we have to disallow trivial reveal queries

ex: QUIC

Client C Server S
ephemeral eskC , epkC
K1 = DH(eskC , pkS) K1 = DH(epkC , skS)

ephemeral eskS , epkS
K2 = DH(eskC , epkS) K2 = DH(epkC , eskS)

epkC

{epkS}K1

disclosure of K1 compromises K2

I key-dependent KE: disclosure of Ki before acceptance of Ki+1 compromises Ki+1
I key-independent KE: disclosure of Ki before acceptance of Ki+1 without harm

I Note: revealing Ki after acceptance of Ki+1 is okay (even with testing Ki+1)

state of execution

K1 K1

K2 K2

K3 K3

reveal K2

key dependence key dependence

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 6

Model for Multi-Stage Key Exchange

Security Aspects to consider (cont’d)
I Forward Security

I multi-stage⇒ forward security might kick in only at some stage j
I has to be considered in case of corruptions

I non-forward-secure KE: all session keys compromised by corruption
I stage-j-forward-secure KE: accepted keys at stages i ≥ j remain secure

ex: QUIC aims at stage-2 forward security

I Unilateral Authentication
I (independent of multi-stage setting)
I distinguish one side authenticated vs. both sides authenticated

I unilateral authentication: only one side authenticated (here: responder)
I mutual authentication: both sides authenticated

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 7

Model for Multi-Stage Key Exchange

Let’s talk about security. . .

Multi-Stage Security

I Bellare–Rogaway-like key secrecy in the multi-stage setting
I adversary has to distinguish real from random keys
I adversary must not reveal and test same key (in single or partnered sessions)

I Flavors

key-dependent or key-independent
+ non-forward-secure or stage-j-forward-secure
+ unilateral authentication or mutual authentication

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 8

Model for Multi-Stage Key Exchange

Multi-Stage Security Flavors

I key dependence, forward security, unilateral authentication are orthogonal
I in principle one can think of any combination

I combinations form an ordered hierarchy

KI,1-FS,U

KD,1-FS,U

KI,2-FS,U

KD,2-FS,U

KI,M-FS,U

KD,M-FS,U

KI,NFS,U

KD,NFS,U

KI,1-FS,M

KD,1-FS,M

KI,2-FS,M

KD,2-FS,M

KI,M-FS,M

KD,M-FS,M

KI,NFS,M

KD,NFS,M

key-dependent (KD), stage-2-forward-secure (2-FS), unilateral authentication (U)

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 9

Model for Multi-Stage Key Exchange

pkB , skA pkA, skB

KE

K1 K1

K2 K2

$

???

Channel
What about composition?

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 10

Composition

recap: BR-secure KE + symmetric-key protocol = secure composition (BFWW’11)

can we have the same for multi-stage key exchange?

Goal
I secure multi-stage key exchange (with some properties. . .)
I + symmetric-key protocol using keys of stage i
I = secure composition

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 11

Composition

Our Composition Result
Take

I secure multi-stage key exchange protocol
I key-independent
I stage-j-forward-secure
I mutual authentication (extension to unilateral case possible)
I efficient session matching (BFWW’11)

session partnering deducible
from adversary communication

I symmetric-key protocol
I secure w.r.t. some security notion

Then composition is secure for forward-secure stages (i ≥ j).

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 12

Composition

Proof idea (similar to BR-secure composition)

1. key replacement
I gradually replace session keys Ki by random values (hybrid)
I A distinguishes⇒ we break Multi-Stage security

protocol1($)

protocol2($)

. . .

protocolλ($)

protocolλ+1(K)

. . .2. reduction to protocol security
I all keys random⇒ independent of KE
I breaking is equivalent to breaking protocol security directly

composition protocol

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 13

Composition

Proof ingredient example: key independence

I guarantees that compromising (reveal) Ki′ (i ′ < i) doesn’t affect stage-i keys
I otherwise replacing Ki with random key can be inconsistent

. . .

Ki′

Ki

. . .

Ki′

$

hybrid proof step

reveal Ki′

key dependence

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 14

Google’s Quick UDP Internet Connections

KE

AEAD: AES-GCM, Salsa20/Poly1305

UDP (+ handling)

Client C Server S
knows server’s pkS skS

ephemeral eskC , epkC
K1 = KDF (n, DH(eskC , pkS))

K1 = KDF (n, DH(epkC , skS))
ephemeral eskS , epkS

K2 = KDF (n, DH(epkC , eskS))
K2 = KDF (n, DH(eskC , epkS))

nonceC , epkC
{data}K1

{epkS}K1

{data}K2

inchoate hello
scfg, [nonceS]

public scfg
(certified)

strike
register

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 15

Google’s QUIC

Client C Server S
ephemeral eskC , epkC

K1 = KDF (n, DH(eskC , pkS)) K1 = KDF (n, DH(epkC , skS))
ephemeral eskS , epkS

K2 = KDF (n, DH(eskC , epkS)) K2 = KDF (n, DH(epkC , eskS))

nonceC , epkC

{epkS}K1

Our (Multi-Stage) Security Result for QUIC’s 0-RTT Key Exchange

I key-dependent
I stage-2-forward-secure
I (responder-authenticated) unilateral

assuming
I Gap-Diffie-Hellman is hard
I authenticated channel for 2nd message {epkS}K1
I (HMAC-based) key derivation function: extraction, expansion = random oracles

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 16

Google’s QUIC

What about Composition?
I requirements:

I key independence

7

I stage-j forward security

3

I mutual authentication

(3)

I but QUIC can be easily turned into a key-independent variant QUICi :
I TLS-like idea: keep some (master) secret not exposed in Reveals
I let an additional secret value from KDF in stage 1 enter KDF in stage 2

I QUICi + composition result⇒ (forward-)secure channels from stage 2

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 17

Google’s QUIC

What about Composition?
I what QUIC achieves:

I key independence 7
I stage-2 forward security 3
I unilateral authentication (3)

I but QUIC can be easily turned into a key-independent variant QUICi :
I TLS-like idea: keep some (master) secret not exposed in Reveals
I let an additional secret value from KDF in stage 1 enter KDF in stage 2

I QUICi + composition result⇒ (forward-)secure channels from stage 2

November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 17

Summary

So far, KE models could not capture protocols that establish more than one key.

We
I propose a model for multi-stage key exchange

K1 K1

K2 K2

K3 K3

Reveal

I give composition results under certain conditions
(session-key independence matters!) composition protocol

I show that Google’s QUIC is multi-stage secure
(key-dependent, stage-2-forward-secure, unilateral)
for our composition: add key-independence

Client C Server S
ephemeral eskC , epkC
K1 = DH(eskC , pkS) K1 = DH(epkC , skS)

ephemeral eskS , epkS
K2 = DH(eskC , epkS) K2 = DH(epkC , eskS)

epkC

{epkS}K1

Thank You!
November 6th, 2014 | ACM CCS 2014, Scottsdale, Arizona, USA | Felix Günther (TU Darmstadt) | 18

	Motivation
	Model
	Composition
	QUIC
	Summary

