
A preliminary version of this paper appears in the proceedings of the 2nd IEEE European Symposium on Security
and Privacy (EuroS&P 2017). This is the full version.

Replay Attacks on Zero Round-Trip Time:
The Case of the TLS 1.3 Handshake Candidates

Marc Fischlin Felix Günther

Cryptoplexity, Technische Universität Darmstadt, Germany
marc.fischlin@cryptoplexity.de, guenther@cs.tu-darmstadt.de

February 2, 2017

Abstract. We investigate security of key exchange protocols supporting so-called zero round-trip
time (0-RTT), enabling a client to establish a fresh provisional key without interaction, based only on
cryptographic material obtained in previous connections. This key can then be already used to protect
early application data, transmitted to the server before both parties interact further to switch to fully
secure keys. Two recent prominent examples supporting such 0-RTT modes are Google’s QUIC protocol
and the latest drafts for the upcoming TLS version 1.3.

We are especially interested in the question how replay attacks, enabled through the lack of contribution
from the server, affect security in the 0-RTT case. Whereas the first proposal of QUIC uses state on
the server side to thwart such attacks, the latest version of QUIC and TLS 1.3 rather accept them as
inevitable. We analyze what this means for the key secrecy of both the preshared-key-based 0-RTT
handshake in draft-14 of TLS 1.3 as well as the Diffie–Hellman-based 0-RTT handshake in TLS 1.3
draft-12. As part of this we extend previous security models to capture such cases, also shedding light
on the limitations and options for 0-RTT security under replay attacks.

1

Contents
1 Introduction 3

1.1 Zero Round-Trip Time . 3
1.2 The Problem with Replays and How It Is (Not) Solved in QUIC and TLS 1.3 4
1.3 Our Contribution . 6
1.4 Related Work . 7

2 Preliminaries 8

3 Modeling Replayable 0-RTT inMulti-Stage Key Exchange 10
3.1 Outline of the Model for Multi-Stage Key Exchange . 10
3.2 Adding 0-RTT to Multi-Stage Protocols . 11
3.3 Preliminaries . 12
3.4 Adversary Model . 14
3.5 Security of Multi-Stage Key Exchange Protocols . 18

3.5.1 Match Security . 18
3.5.2 Multi-Stage Security . 19

4 The TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshake Protocols 20

5 Security of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshakes 23
5.1 PSK(-only) 0-RTT Handshake . 25
5.2 PSK-(EC)DHE 0-RTT Handshake . 28

6 The TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake Protocol 33

7 Security of the TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake 36

8 Comparing the QUIC and TLS 1.3 0-RTT Handshakes 45

9 Composition 45

2

1 Introduction
Key exchange protocols are among the most widely used cryptographic protocols today, incorporated,
e.g., in the TLS, SSH, IPsec, and QUIC protocols. They serve the purpose of establishing a (potentially
authenticated) secret key between two parties in a network. While efficiency has always been a relevant
aspect for such protocols, optimization traditionally focused on the cryptographic operations, which for a
long time dominated the overall cost (in time) for executions. With the technological progress in speed
of computation, but also advances and, equally important, the deployment of elliptic-curve cryptography,
researchers and practitioners managed to reduce the cost of (even asymmetric) cryptographic operations
drastically over the last decades. As a result, the communication complexity has become a more and more
dominant factor for the overall efficiency of key exchange protocols.

1.1 Zero Round-Trip Time

While steadily increasing bandwidth on the Internet renders the data complexity aspect of communication
subordinate, speed of light prepares to set a definitive lower bound for the time a message needs to be
sent back and forth between two parties (called round-trip time). Reducing the round complexity has
hence become a major design criteria in the last years, with several low-latency designs for key exchange
proposed by researchers [PZS+13, KW16, HJLS15, WTSB16] as well as by practitioners. Prominent
practical examples are in particular Google’s QUIC protocol [QUI] incorporated into the Chrome browser
and the upcoming TLS version 1.3 [Res16e], the latter being based on the OPTLS key exchange protocol
by Krawczyk and Wee [KW16]. Those designs set out to establish an initial key in zero round-trip time
(0-RTT) that allows one party (usually the client) to send “early” data already along with the first key
exchange message to a (previously visited) server.

Without the server being able to contribute, it is well understood that such an approach cannot achieve
equally strong security guarantees for the initial key as classical key exchange protocols are able to provide
with a full round-trip (and hence contributions from both parties). In particular, the initial key cannot
provide (forward) secrecy in a setting where no state is shared between sessions and all but the ephemeral
keying material is compromised after the key exchange run. The common strategy is, hence, that both
parties switch to a stronger key (e.g., achieving forward secrecy) after the server contributed in a second
step of the key exchange and protect any further communication under this key.

Diffie–Hellman-based 0-RTT. One main concept to derive a 0-RTT key based on a Diffie–Hellman-
style key exchange and to later upgrade to a stronger, forward-secret key, is shared by both recent prominent
instances QUIC and TLS 1.3 (up to draft-12 [Res16b]).1 From a high-level perspective (i.e., omitting
necessary mechanisms to protect, e.g., against replays or man-in-the-middle attacks which both protocols
employ), this concept works as follows. Prior to the actual key exchange, the client is assumed to have
talked to the server before and, in that communication, obtained a so-called server configuration. Cryp-
tographically speaking, this configuration includes a semi-static Diffie–Hellman share gs, for which the
server stores the secret exponent s for a certain time. In QUIC, authentication of this server configuration
is via an (offline) signed structure announced by the server, in TLS 1.3 it is signed (online) during a prior
handshake.

Within its first message in subsequent executions, the client then sends an ephemeral Diffie–Hellman
share gx, derives the 0-RTT key K1 as (a function of) (gs)x = gxs, and is hence immediately able to, e.g.,
send encrypted data under the key. The server then computes the same key as (gx)s (enabling decryption
of the 0-RTT data) and responds with its own ephemeral share gy for the stronger shared key. Both parties

1We refer here to the (EC)DHE 0-RTT variant in TLS 1.3 draft draft-ietf-tls-tls13-12 and the original QUIC proposal
Rev 20130620, see also our comment in Section 1.3 about the status of these documents.

3

derive the full key K2 as (a function of) gxy, which can then enjoy forward secrecy in the sense that it
remains secure even if gs or the parties long-term secrets are later compromised.

Preshared-key-based 0-RTT. Another concept for establishing a key in zero round-trip time is based
on pre-shared keys (PSKs) and, from draft-13 [Res16c] on, forms the basis of the only 0-RTT handshake
mode specified for TLS 1.3 (i.e., the option for Diffie–Hellman-based 0-RTT was deferred in draft-13).
Here, the 0-RTT key K1 is derived from a previously established secret key (e.g., in TLS 1.3 a key
established for session resumption in a regular handshake). The client can perform this computation
without interaction with the server and hence is able to immediately send encrypted data under K1. Later,
both parties update a full key K2 derived from the pre-shared secret and further exchanged material, e.g.,
fresh Diffie–Hellman shares to ensure forward secrecy.

1.2 The Problem with Replays and How It Is (Not) Solved in QUIC and TLS 1.3

The standard approach in key exchange protocols to prevent a man-in-the-middle attacker from replaying
messages in order to make a party derive the same key twice is two include a nonce in both the client’s
and the server’s messages and let the nonce contribute to the derived key. For a 0-RTT key exchange,
which is essentially a one-pass (i.e., one-message) key exchange protocol [BWM99], messages (and hence
keys) are—at first glance—inevitably replayable2.

The QUIC protocol side-stepped the replay problem in its original cryptographic design [LC13] (called
Rev 20130620 here) by demanding the server to store all nonces seen in a so-called “strike register”—
restricted in size by a server-specific “orbit” prefix and current time contained in the nonces—and rejecting
any recurring nonce. As security analyses confirmed [FG14, LJBN15], this approach indeed allows to
establish a secure 0-RTT key which is non-replayable in the sense that no adversary can make a party
derive the same key twice. However, while this approach can succeed to prevent replays on the key-
exchange level (in terms of preventing double-derivation of keys), it inevitably fails to prevent (logical)
replays of the actual data exchanged, in particular when it comes to real-world settings where a server
entity is implemented in a cluster of, potentially distributed, servers, as we explain next. Let us stress that
this problem with replays is independent of whether the 0-RTT key exchange is based on Diffie–Hellman
or on preshared keys.

As discovered by Daniel Kahn Gillmor in the discussion around the upcoming TLS version 1.3 [Res15b],
any 0-RTT anti-replay mechanism deployed at the key exchange level becomes void when combined within
an overall channel protocol that aims to provide reliable delivery of data messages (like, e.g., QUIC or
TLS). The reason is that such a protocol will resend rejected 0-RTT data under the second (final) key
derived automatically in order to ensure delivery. A generic attacker can hence, for any client sending
0-RTT key-exchange messages together with some encrypted data, make this data being delivered twice
in the following attack, also illustrated in Figure 1 (see [Res15b] for a more detailed description of the
attack).

The attacker first conveys the client’s 0-RTT messages and encrypted data to the server (which pro-
cesses it), but drops the server’s key exchange response. It then forces the server to lose its state, e.g.,
through rebooting, and presents the same messages again to the server. The server, with knowledge about
its reset, has to conservatively decline the 0-RTT part of the key exchange for security reasons, but will
reply with its own key exchange contribution for the final key which the attacker now simply relays to the
client. The client derives the final key and, to ensure reliable delivery, sends the desired data again under
this key, which the server will hence decrypt and process a second time. This constitutes a replay of the
contained application data and might, e.g., result in a web transaction being processed twice.

2We use the notion of replays interchangeably for both messages and the keys computed based on those replayed messages.

4

Client Attacker Server
0-RTT key-exchange messages
0-RTT data "request"

process "request"
accept 0-RTT

key-exchange response messages

enforce loss of state (e.g., reboot)

replay 0-RTT key-exchange messages
replay 0-RTT data "request"

reject after state loss
for security reasons

reject 0-RTT
key-exchange response messages

final key exchange messages
resend data "request" under final key
(to ensure reliable transmission) process "request"

(again)

Figure 1: Generic replay attack discovered by Daniel Kahn Gillmor in the IETF TLS working group
discussion around TLS 1.3 [Res15b]. The 0-RTT data "request" could, e.g., be an HTTP request "POST
/buy-something".

Note that the contrived requirement that the attacker is able to reboot the server (while the client
keeps waiting for a response) vanishes in a real-world scenario with distributed server clusters, where the
attacker instead simply forwards the 0-RTT messages to two servers and drops the first server’s response.
The described attack hence in particular affects the cryptographic design of QUIC, which (among others)
specifically targets settings with distributed clusters. Holding up the originally envisioned 0-RTT full
replay protection being impossible, Langley and Chang write in the specification of July 2015 [LC15]
(Rev 20150720) that this design is “destined to die” and will be replaced by (an adapted version of) the
TLS 1.3 handshake. We, however, argue here that QUIC’s strategy in Rev 20130620 still supports some
kind of replay resistance, only at a different level. TLS 1.3, in contrast, forgoes any protection mechanisms
and instead accepts replays as inevitable (on the channel level). Developers using TLS 1.3 are supposed
to be provided with a different API call for sending 0-RTT data [Res16e, Appendix B.1], indicating its
replayability, and responsible for taking replays into account for such data.

There is, then, a significant conceptual gap between replays (of key-exchange messages and keys) on
the key-exchange level, and the replay of user data faced on the level of the overall secure channel protocol
in the 0-RTT setting. While the former can effectively be prevented within the key exchange protocol,
this does not necessarily prevent the latter which can be (and in practice is) induced by the network stack
of the channel actively and automatically re-sending (presumably) rejected 0-RTT data under the main
key. The latter type of logical, network-stack replays is hence fundamentally beyond of what key exchange
protocols can protect against.

5

1.3 Our Contribution

In this work, we reconsider the derivation of 0-RTT keys in the domain of multi-stage key exchange
protocols [FG14], designed to capture protocols establishing sequences of keys in an intertwined way
within a single run. We particularly focus on the security of 0-RTT keys and the question of replays.
Within this context, we analyze the preshared-key-based (PSK-based) 0-RTT handshake mode of draft
draft-ietf-tls-tls13-14 (short: draft-14) for the upcoming TLS version 1.3 as well as the recently
abandoned Diffie–Hellman-based (DH-based) 0-RTT handshake mode in its last specified form in draft-
ietf-tls-tls13-12 (short: draft-12).3 While doing so, we discuss the commonalities and differences
between (the original version of) QUIC and the two TLS 1.3 modes in this respect. We stress that, while
TLS 1.3 draft-14 already is a relatively mature protocol specification, it remains a draft and still contains
un- or underspecified parts. Our inquiry of the TLS 1.3 0-RTT handshakes hence should be conceived as an
early (affirmative) discussion of their cryptographic strength, but cannot constitute a definitive analysis.

As mentioned, the Diffie–Hellman-based ((EC)DHE) 0-RTT handshake was removed from the TLS 1.3
draft specification in draft-13, leaving only a PSK-based 0-RTT mode (with or without additional Diffie–
Hellman exchange) in the latest drafts. Still, the (EC)DHE 0-RTT variant is much closer to the QUIC
and OPTLS proposals, and it may be used as a TLS extension [Res16f], especially since it provides some
kind of forward secrecy [Kra16]. We hence also provide an analysis of the DH-based variant to enable a
comparison of the security guarantees provided, but focus on the PSK-based 0-RTT handshake specified
for draft draft-14.

In more detail, our contributions are fourfold.

Comparison of QUIC and TLS 1.3. We point out, in passing and explicitly in Section 8, how the
designs of QUIC and TLS 1.3 differ in the way of handling 0-RTT, replay attacks, and data, and how this
affects the security. This testifies that, although there may be an agreement on the general goals which
should be achieved with 0-RTT, the technical details can vary significantly. One major difference has
already been discussed above, carving out that both protocols treat replays differently. Another difference
is that QUIC basically restarts the key exchange for an invalid (rejected) 0-RTT request, whereas TLS 1.3
instead only skips over to the regular handshake part. Both protocols also employ different approaches to
derive the session keys: While QUIC uses the early key for transmitting both key-exchange messages and
application data, TLS 1.3 uses a more versatile approach to create early keys for designated purposes and
thus achieves stronger security guarantees and better modularity.

Multi-stage key exchange with replayable 0-RTT keys. As the original QUIC key exchange Rev
20130620 [LC13] ensures non-replayability (on the key-exchange level), the analysis by Fischlin and Gün-
ther in the multi-stage setting [FG14] did not consider replays. The TLS 1.3 0-RTT handshake candidates
(both draft-12 DH-based and draft-14 PSK-based), however, do not aim at preventing replays even on
the key-exchange level, motivated by that any such measure would be defeated by the active, logical replay
of data ensuring reliable delivery, as discussed above.

We hence extend (in Section 3) the previous multi-stage key exchange models used to analyze QUIC [FG14]
and the full and preshared-key handshakes of TLS 1.3 [DFGS15a, DFGS16] in several aspects. First of
all, we introduce the distinction between replayable and non-replayable stages (and, hence, keys) which,
in the case of TLS 1.3, allows us to capture that the 0-RTT key exchange messages of a client session
can be replayed to multiple server sessions which will all derive the same key. In order to capture the
effects of exposures of the semi-static keys used in a DH-based handshake to non-interactively derive the
0-RTT keys, we allow them to be compromised and define how this affects both 0-RTT keys (which will

3Since our analysis, several follow-up draft versions of TLS 1.3 have been published, maintaining the PSK-based 0-RTT
handshake mode.

6

be compromised) and non–0-RTT keys (which are required to remain secure). We additionally distinguish
between keys used to protect application data only (called external keys) and keys which are also used
within the key exchange, e.g., to encrypt key exchange messages (called internal keys). Such distinction
was previously only made informally for the final key(s) derived [DFGS15b, DFGS16]. In the TLS 1.3
0-RTT handshakes however, also intermediate keys (namely, the 0-RTT early-data application key tkead)
are only used externally, a setting for which our notion provides a cleaner separation.

Security analysis of the TLS 1.3 draft-14 PSK/PSK-(EC)DHE 0-RTT and draft-12 (EC)DHE
0-RTT handshakes. We then apply our model (in Sections 5 and 7) to analyze the PSK and PSK-
(EC)DHE 0-RTT handshake modes specified in TLS 1.3 draft-14, which we describe in Section 4 first,
as well as the (EC)DHE 0-RTT handshake mode of draft-12, described in Section 6. The other specified
handshake modes of TLS 1.3, full (EC)DHE and pre-shared key, have already been analyzed by Dowling
et al. [DFGS16] for the previous (relatively close) draft-10 [Res15a]. Our analysis shows that all three
0-RTT handshakes are secure (multi-stage) key exchange protocols, establishing random-looking keys. In
particular, the two 0-RTT keys derived to protect the early handshake messages and application data, tkehs
resp. tkead, achieve the desired unilateral resp. mutual authentication, and are—as expected—replayable.
Furthermore, we confirm that the second parts of the handshakes (essentially a full (EC)DHE resp. a regular
PSK/PSK-(EC)DHE handshake), achieve security similar to that attested by Dowling et al. [DFGS16] for
draft-10. Applying concepts established by Fischlin and Günther [FG14] and Dowling et al. [DFGS15a],
we show that security holds for the different authentication options of TLS 1.3 running in parallel and
that all keys derived are independent in the sense of that leaking one of them does not affect any other
key.

Our security results hold under mostly standard cryptographic assumptions like the unforgeability of the
signature resp. MAC scheme, collision resistance of the hash function, and pseudorandomness properties
of the key derivation function. The handshakes’ security further relies on the (plain) pseudorandom-
function oracle Diffie–Hellman (PRF-ODH) assumption (introduced and used earlier for the analysis of
several Diffie–Hellman–based modes of TLS 1.2 [JKSS12, KPW13]). Notably, for technical reasons that
we detail in our proof, we furthermore need to employ a slightly strengthened, double-sided variant of the
PRF-ODH assumption (which we define under the name of msPRF-ODH in Section 2) for the analysis of
the (EC)DHE 0-RTT handshake (in draft-12).

Composition with external keys. The distinction between external(-only) and internal keys finally
allows us to establish slightly more general, cleaner composition results (in Section 9). We recall that
Fischlin and Günther [FG14] lifted the Bellare–Rogaway compositional result by Brzuska et al. [BFWW11]
to the multi-stage setting (later extended by Dowling et al. [DFGS15a, DFGS16]). On a high level,
their result specifies sufficient conditions for a multi-stage key exchange protocol such that the protocol
generically composes the established session keys with any symmetric-key protocol. Our refined model
determines more clearly which derived session keys can be possibly amenable to this generic composition
result, establishing the key being external as a necessary condition. We also capture the influence of replays
on generic composition, establishing non-replayability as a further condition.

1.4 Related Work

Our work builds upon and extends the multi-stage key exchange models by Fischlin and Günther [FG14]
(used to analyze QUIC) and Dowling et al. [DFGS15a, DFGS15b, DFGS16] (used to analyze the full
(EC)DHE and preshared-key handshakes of several prior TLS 1.3 drafts).

The practical requirement for reduced round-trip time, nowadays exemplified in the recent designs of
QUIC and TLS 1.3, has already appeared in the works about MQV [BWM99] as well as HMQV [Kra05]

7

and its one-pass version [HK11]. The idea has later been discussed more formally under the notion of
non-interactive key exchange (NIKE) [CKS09, FHKP13]. The difference to 0-RTT key exchange is that
NIKEs describe protocols which establish a single session key which is not used within the key exchange.
Of course, the key is replayable in the above sense, and security requirements usually disallow trivial
attacks on such replayable keys. Another difference to 0-RTT protocols is that for NIKEs there is usually
no notion of semi-static keys, i.e., since no further interaction takes place the parties cannot authenticate
additional cryptographic keys with limited life span in the subsequent steps.

Krawczyk and Wee [KW16, KW15] recently introduced the OPTLS protocol, which forms the clean
and elegant cryptographic core of the TLS 1.3 handshake modes, as well as analyzed its security in
the Canetti–Krawczyk model [CK01], and also proposed its one-pass version [HK11] for the 0-RTT key.
Focusing on the security of the two keys derived in OPTLS (corresponding to the early-data and application
traffic keys tkead and tkapp in the TLS 1.3 0-RTT handshakes) separately, the coherence notion of key
independence is beyond the scope of their analysis (though mentioned informally), as is the compositional
security of these keys. While remarking that a PRF-ODH-like assumption could potentially be used for the
proof, Krawczyk and Wee employ different assumptions for their analysis, namely the Gap-DH assumption
in the random oracle model. Furthermore, OPTLS does not include a PSK-based 0-RTT mode and TLS 1.3
also extends the OPTLS protocol in order to include client authentication, resumption, encryption of
handshake messages, and further exported keying material; aspects that we take into account in our
analysis of the 0-RTT handshake modes.

A recent work by Hale et al. [HJLS15] introduces a simplified security model for low-latency key
exchange with two session keys, one early key and one final key, as in case of QUIC. For their security
model they introduce a notion called strong key independence which basically says that revealing the
early key does not violate secrecy of the final key (or vice versa). This seems to be exactly in the same
spirit as the notion of key independence introduced earlier in [FG14] and also used here. Furthermore,
Hale et al. [HJLS15] point out that QUIC does not provide strong key independence. This has already
been discussed in [FG14], inciting the authors in [FG14] to also propose a slight modification of QUIC,
called QUICi, which achieves their notion of key independence via modifying the key derivation steps
only. Hale et al. [HJLS15] then give a new generic construction secure in their model, including strong key
independence, based on non-interactive key exchange. Finally, as discussed in [HJLS15], the back then
available draft-08 still had a not fully specified 0-RTT mode, leaving the implications of the results to
the current draft of TLS 1.3 unclear. Remarkably, the model allows for replay attacks on the 0-RTT keys,
as a consequence confining the admissible tests on keys, even though such replay attacks are excluded in
QUIC via strike registers. Moreover, the latest drafts of TLS 1.3 generate more than two session keys, as
considered in the model of [HJLS15].

Also recently, Cremers et al. [CHSvdM16] presented a tool-supported analysis of TLS 1.3 draft-10
including 0-RTT mode, resumption, and delayed client authentication, discovering an attack on the inter-
action between the preshared-key handshake and the (expected) specification of client authentication.

Finally, our work is part of a substantial effort of the security research community in analyzing draft
versions of TLS 1.3 prior to its standardization. We refer to Paterson and van der Merwe [PvdM16] for
an overview over these analyses and a discussion of TLS 1.3’s proactive standardization process.

2 Preliminaries
The key derivation in TLS 1.3 consists of a complex schedule of operations (cf. Figures 2 and 3) based
on the HKDF key derivation function by Krawczyk [Kra10] which in turn is grounded on the HMAC
scheme [BCK96, KBC97]. In particular for the analysis of the 0-RTT keys established in TLS 1.3 draft-12
and draft-14 we rely—besides the common assumptions about the collision resistance of hash functions,

8

unforgeability of signatures resp. MACs, or pseudorandomness properties of the key derivation function—
on two more specific cryptographic assumptions about the security of (the extraction step of) HKDF,
which we describe in the following.

The first assumption is induced by an intermediary HKDF extraction step in the TLS 1.3 draft-14
key schedule where a value ES is derived from a pre-shared key PSK as ES ← HKDF.Extract(0,PSK) =
HMAC(0,PSK). While this step can in general accommodate non-uniform pre-shared keys, those in our
analysis are always uniformly random values PSK ∈ {0, 1}λ and hence HMAC(0,PSK) is supposed to work
as a uniform mapping from {0, 1}λ to {0, 1}λ. This leads us to introducing the according assumption on
HMAC (denoted HMAC(0, $)-$) that HMAC(0, x) for an unknown, uniformly random value x $←− {0, 1}λ is
computationally indistinguishable from another uniformly random value y $←− {0, 1}λ. We formalize this
assumption as follows.

Definition 2.1 (HMAC(0, $)-$ assumption). Let HMAC be the HMAC function as defined in [BCK96], A
be a PPT algorithm, and x, y $←− {0, 1}λ be two independent, uniformly random values.

We define the advantage function

AdvHMAC(0,$)-$
HMAC,A :=

∣∣∣Pr
[
A(1λ,HMAC(0, x)) = 1

]
− Pr

[
A(1λ, y) = 1

] ∣∣∣
and say that the HMAC(0, $)-$ assumption holds for HMAC if for any A the advantage function is negligible
(as a function in λ).

The second assumption, denoted msPRF-ODH, is a double-sided variant of the pseudorandom-function
oracle-Diffie–Hellman (PRF-ODH) assumption [JKSS12], which itself is an adaptation of the oracle Diffie–
Hellman assumption introduced by Abdalla et al. [ABR01] to the PRF setting. The PRF-ODH assump-
tion has been used to analyze the security of the previous TLS version 1.2 DHE handshake by Jager et
al. [JKSS12], the TLS 1.3 draft-10 (EC)DHE and PSK handshakes by Dowling et al. [DFGS16] (in a
single-query variant which we also employ in our analysis of the draft-14 PSK-(EC)DHE 0-RTT hand-
shake), and further TLS 1.2 handshake variants by Krawczyk et al. [KPW13] (in a multi-query variant
forming the basis for our msPRF-ODH definition).4 We make use of the msPRF-ODH assumption in the
analysis of the draft-12 (EC)DHE 0-RTT handshake in Section 7 where we also discuss its context and
necessity in more detail.

Definition 2.2 (msPRF-ODH assumption). Let G = 〈g〉 be a cyclic group of prime order q with genera-
tor g, PRF : G× {0, 1}∗ → {0, 1}λ be a pseudorandom function with keys in G, input strings from {0, 1}∗,
and output strings of length λ, let b ∈ {0, 1} be a bit, and A be a PPT algorithm.

We define the following msPRF-ODH security game GmsPRF-ODH,b
PRF,G,A :

Setup. The challenger chooses v $←− Zq at random and gives gv to A.

Query 1. In the next phase A can ask queries of the form (gu, x) ∈ (G, {0, 1}∗) which the challenger
answers with the value y ← PRF((gu)v, x).5

Challenge. At some point A asks a challenge query x̂ ∈ {0, 1}∗ on which the challenger chooses û $←− Zq
at random, sets ŷ0 ← PRF(gûv, x̂) and ŷ1

$←− {0, 1}λ, and answers with (gû, ŷb).
4Jager et al. [JKSS12] were able use the weaker single-query variant of the PRF-ODH assumption as they simulated

protocol steps for an ephemeral Diffie–Hellman key only. Since we employ the assumption for the (re-usable) semi-static
key, a stronger multi-query variant is necessary, as it was likewise to prove security of the non-ephemeral DH ciphersuite in
TLS 1.2 [KPW13]. Moreover, we also need to enable a single query involving the ephemeral Diffie–Hellman share, rendering
the assumption double-sided.

5We require that the first element is in G and hence write it as gu, although A does not necessarily know u.

9

Query 2. Again, A can ask queries of the form (gu, x) ∈ (G, {0, 1}∗) which the challenger answers with
the value y ← PRF((gu)v, x), except that A is not allowed to query the pair (gû, x̂).
Additionally, and this is where our version differs from the previous PRF-ODH assumption, adversary
A can ask one distinct query of the form (gv̂, x) ∈ (G, {0, 1}∗) for gv̂ 6= gv which the challenger
answers with the value y ← PRF((gv̂)û, x).

Guess. Eventually, A stops and outputs a bit b′ which is also the game output, denoted by GmsPRF-ODH,b
PRF,G,A .

We define the advantage function

AdvmsPRF-ODH
PRF,G,A :=

∣∣∣Pr
[
GmsPRF-ODH,0

PRF,G,A = 1
]
− Pr

[
GmsPRF-ODH,1

PRF,G,A = 1
] ∣∣∣

and, assuming a sequence of groups in dependency of the security parameter, we say that the msPRF-ODH
assumption holds for PRF with keys from (Gλ)λ if for any A the advantage function is negligible (as a
function in λ).

3 Modeling Replayable 0-RTT in Multi-Stage Key Exchange
In this section we recap the multi-stage key exchange model introduced by Fischlin and Günther [FG14],
and later extended by Dowling et al. [DFGS15a, DFGS16], and augment it for capturing replayable 0-RTT
keys. To capture security of the draft-12 (EC)DHE 0-RTT handshake (where authentication is provided
through long-term signing keys) as well as the draft-14 PSK-based 0-RTT handshakes, we treat both
the public-key (MSKE) and the preshared-secret (MS-PSKE) variant of the model. We start by outlining
the original multi-stage setting and the modifications we introduce. We then define the security model
formally.

3.1 Outline of the Model for Multi-Stage Key Exchange

The multi-stage key exchange model follows the game-based paradigm of Bellare and Rogaway [BR94].
That is, the adversary controls the network over which the parties communicate, giving the adversary the
power to read and alter protocol messages in transmission. For this the adversary can call a NewSession
oracle (starting a new session of a specified honest party) and a Send oracle (which delivers some message
to a specified party). To argue about the secrecy of keys the adversary may make (multiple) Test queries
for some stage of the protocol to either receive the corresponding session key of that stage or to obtain an
independent random key instead. In the multi-stage setting one must restrict the set of admissible Test
queries to avoid trivial attacks, e.g., if a tested session key is used in a later stage of the execution.

To model leakage of long-term secrets and, through this, forward secrecy of keys (i.e., security after
long-term secret compromise) we also grant the adversary access to a Corrupt oracle which returns the
corresponding secret key. Moreover, we (independently) capture leakage of semi-static keys (used in Diffie–
Hellman-based 0-RTT key derivation as, e.g., TLS 1.3 draft-12 (EC)DHE 0-RTT) through a separate
RevealSemiStaticKey oracle. In our model we do not consider leakage of internal state of the parties (such
as randomness or master secrets) but note that one can in principle enhance the model further to capture
such attacks. Still, we allow for leakage of session keys, modeling insecure usage of such keys in follow-up
protocol steps (of the key exchange protocol itself or in subsequent communication protocols). As in the
common Bellare–Rogaway model we must prohibit compromise of secrets in sessions partnered with tested
sessions. Here, partners are identified via session identifiers.

Session identifiers in the multi-stage setting are more elaborate than in the single-stage Bellare–
Rogaway case. Depending on the protocol, revealing a session key via a Reveal query may render the

10

subsequent session key insecure, e.g., if contributions to the session key of the following stage are sent au-
thenticated under the key of the current stage (as in QUIC [LC15, FG14]). A protocol which can tolerate
such leakage is called (session-)key independent, else it is called key dependent.

For TLS 1.3, Dowling et al. [DFGS15a] refined the original model [FG14] (beyond introducing the
preshared-secret variant) further to cover the various authentication properties of the different handshakes
and also of the different stages. For this they distinguish between unauthenticated, unilaterally authenti-
cated, and mutually authenticated stages, and treat security of multiple sessions running in parallel with
different authentication modes. They also implemented the common TLS property of post-specified peers
[CK02] via wildcards ‘∗’ for intended communication partners, which can be set once throughout the
protocol run, e.g., after the party has verified the certificate of the partner.

Another change from [FG14] to [DFGS15a] concerns the notion of contributive identifiers for the
case of sessions with unauthenticated partners. Since the adversary can potentially impersonate the
unauthenticated partner, keys in such sessions cannot be secure in general. Still, such keys should be
considered secure as long as the full contribution to the key clearly stems from an honest party (even
though this honest party may never complete its execution to output a session identifier). Contributive
identifiers allow to specify such partnered contributions.

Both works [FG14, DFGS15a] follow the approach of Brzuska et al. [BFWW11] to split the security
requirements into one for Match security, capturing among others uniqueness of session identifiers, corre-
spondence of session identifiers and keys, and linking contributive identifiers to session identifiers, and into
the common requirement for key secrecy.

3.2 Adding 0-RTT to Multi-Stage Protocols

To capture 0-RTT in the multi-stage setting we augment the model in [DFGS15a, DFGS16] by the following
points:

1. We introduce the notion of replayable stages.

2. We allow exposure of the semi-static keys used for establishing 0-RTT keys. Note that the exposure
of pre-shared keys (used for PSK-based 0-RTT) is already captured through Corrupt queries.

3. We distinguish between external session keys (used for protecting the application layer only) and
internal session keys (which can be used within the key exchange protocol). Note that since, by
default, session keys are always output by key exchange protocols, internal keys may thus also be
used further in applications, of course.

As mentioned in the introduction, replayable stages in a multi-stage key exchange protocol are basically
those stages in which an adversary can force more than two sessions to share the same session identifiers
and session keys by replaying previous interactions. Note that for 0-RTT, replayability is inevitable for
stateless parties, whereas Google’s QUIC protocol in version Rev 20130620 thwarts such replay attacks
via strike registers storing information about previous connections.

In our model we assume that the protocol specifies stages as replayable or non-replayable. The latter
type of stage leaves the original security properties untouched. The replayable kind of stage allows for
multiple collisions among session identifiers and keys, such that we need to relax the notion of Match
security for such stages. Key secrecy should be not affected by replayability because the adversary may
be able to foist the same key on multiple sessions, but the key itself should still look random.

The other modification refers to exposure of semi-static keys. Recall that such keys are used in TLS 1.3
(up to draft-12) to enable 0-RTT for the DH-based mode by having the client mix a fresh ephemeral
key to such a semi-static key. The life span of such a semi-static key may range over multiple sessions,
and we therefore leave the choice of which of these keys to use (and when to create it) to the adversary.

11

This is modeled by augmenting the NewSession query by a field for specifying the semi-static key, and by
having a NewSemiStaticKey command to let a party create a fresh semi-static key. Leakage of semi-static
keys is captured by adding a RevealSemiStaticKey query to the model through which the adversary learns
the corresponding secret key. The previous works [FG14, DFGS15a] have not yet supported such leakage,
even though [FG14] already introduced the equivalent idea of a temporary key for analyzing QUIC.

Note that we separate leakage of the semi-static key by RevealSemiStaticKey queries from revealing the
long-term secret via Corrupt queries. This corresponds to the setting where a semi-static key may actually
no longer be used by a server and its secret key been irrevocably erased. The adversary can, of course,
always mount RevealSemiStaticKey commands before a Corrupt request, thus enhancing the adversary’s
capabilities and strengthening the security claims.

The explicit distinction between internal and external session keys implements a cleaner way to deal
with early derived keys used exclusively in, e.g., the TLS record protocol. In contrast to QUIC, where
only the final session key is not used in the key exchange messages, the 0-RTT step of TLS 1.3 allows both
parties to immediately establish the early handshake and early application-data traffic key tkehs and tkead,
with a clear separation of concerns. The former early handshake key is used to protect the handshake
messages (internally), and the early application-data key is only used to protect external application data
sent by the client before finishing the full handshake.

3.3 Preliminaries

In contrast to previous works formalizing multi-stage key exchange [FG14, DFGS15a, DFGS16], we explic-
itly separate some protocol-specific properties (as, e.g., various authentication flavors) from session-specific
properties (as, e.g., the state of a running session). We represent protocol-specific properties as a vector
(M,AUTH,USE,REPLAY) that captures the following:

• M ∈ N: the number of stages (i.e., the number of keys derived)6

• AUTH ⊆ {unauth, unilateral,mutual}M: the set of supported authentication properties (for each
stage). As in [DFGS15a] we call stages and keys unauthenticated if they provide no authentication
for either communication partner, unilaterally authenticated if they authenticate only the responder
(server) side, and mutually authenticated if they authenticate both communication partners.

• USE ∈ {internal, external}M: the usage indicator for each stage, where USEi indicates the usage
of the stage-i key. Here, an internal key is used within the key exchange protocol (but possibly
also externally), whereas an external key must not be used within the protocol, making the latter
potentially amenable to generic composition (see Section 9).

• REPLAY ∈ {replayable, nonreplayable}M: the replayability indicator for each stage, where REPLAYi
indicates whether the i-th stage is replayable in the sense that a party can easily force identical
communication and thus identical session identifiers and keys in this stage (e.g., re-sending the same
data in 0-RTT stages). Note that the adversary, however, should still not able to distinguish such
a replayed key from a random one. Note that, from a security viewpoint, the usage of replayable
stages should ideally be small, whereas such stages usually come with an efficiency benefit.

To give a concrete example, the TLS 1.3 draft-14 PSK 0-RTT handshake is a multi-stage key exchange
protocol with the following properties:

6We fix a maximum stage M only for ease of notation. Note that M can be arbitrarily large in order to cover protocols
where the number of stages is not bounded a-priori. Also note that, for technical convenience, stages and session keys may
be “back to back,” without further protocol interactions between parties.

12

• it has five stages (M = 5),

• it provides mutual authentication for all five keys derived (AUTH =
{
(mutual,mutual,mutual,mutual,

mutual)
}
),

• it uses keys of stages 1 and 3 internally within the key exchange protocol and the other keys only
externally, exporting them to other protocols USE = (internal, external, internal, external, external)),

• and the initial two stages are replayable (REPLAY = (replayable, replayable, nonreplayable, nonreplayable,
nonreplayable)).

To formalize sessions we denote by U the set of identities used to model the participants in the system,
each identified by some U ∈ U Sessions of a protocol are uniquely identified (on the administrative level
of the model) using a label label ∈ LABELS = U ×U ×N, where (U, V, k) indicates the k-th local session of
identity U (the session owner) with V as the intended communication partner.

In the public-key variant of the model (MSKE), each identity U is associated with a certified long-term
public key pkU and secret key skU . In the preshared-secret setting (MS-PSKE), a session instead holds
a key index for the preshared secret pss (and its unique identifier psid) used. The challenger maintains
vectors ~pssU,V and ~psidU,V of preshared secrets created on adversary demand, with the k-th entry indicating
the k-th secret resp. corresponding identifier shared by parties U and V .

In addition to the long-term keys, parties may (in the public-key setting) also hold certified semi-static
key pairs (sspk, sssk), each identified by a semi-static key identifier sskid.7 Semi-static keys moreover are
associated with some auxiliary data sskaux which may for example carry the data structure in which a party
learns the semi-static key (in TLS 1.3, this is the ServerConfiguration message and other identifiers).
Finally, a flag stssk,sskid ∈ {fresh, revealed} indicates whether a semi-static key has been revealed to the
adversary or not. This flag is convenient since in our model semi-static keys are linked to replayable
stages, especially to 0-RTT stages (as is common practice), such that we consider the disclosure of such
keys inevitably rendering these session key to be insecure.

For each session, a tuple with the following information is maintained as an entry in the session list
ListS, where values in square brackets [] indicate the default/initial value. Some variables have values for
each stage i ∈ {1, . . . ,M}.

• label ∈ LABELS: the unique (administrative) session label

• U ∈ U : the session owner

• V ∈ (U ∪ {∗}): the intended communication partner, where the distinct wildcard symbol ‘∗’ stands
for “unknown identity” and can be set to a specific identity in U once by the protocol

• role ∈ {initiator, responder}: the session owner’s role in this session

• auth ∈ AUTH: the intended authentication type (for each stage) from the set of supported authen-
tication properties AUTH, where authi indicates the authentication level in stage i > 0

• stexec ∈ (RUNNING ∪ ACCEPTED ∪ REJECTED): the state of execution [running0], where RUNNING =
{runningi | i ∈ N0}, ACCEPTED = {acceptedi | i ∈ N}, REJECTED = {rejectedi | i ∈ N}

• stage ∈ {0, . . . ,M}: the current stage [0], where stage is incremented to i when stexec reaches acceptedi
resp. rejectedi

7While previous multi-stage key exchange models [FG14, DFGS15a] denoted those keys as “temporary keys,” we adopt
the more common notation of “semi-static keys” here which is also used in TLS 1.3.

13

• sid ∈ ({0, 1}∗ ∪ {⊥})M: sidi [⊥] indicates the session identifier in stage i > 0

• cid ∈ ({0, 1}∗ ∪ {⊥})M: cidi [⊥] indicates the contributive identifier in stage i > 0

• K ∈ ({0, 1}∗ ∪ {⊥})M: Ki [⊥] indicates the established session key in stage i > 0

• stkey ∈ {fresh, revealed}M: stkey,i [fresh] indicates the state of the session key in stage i > 0

• tested ∈ {true, false}M: test indicator testedi [false], where true means that Ki has been tested

In the public-key (MSKE) variant, ListS furthermore contains the following entries:

• sskidU : the key identifier for the semi-static key pair (sspk, sssk) used by the session owner (⊥ if no
key is used)

• sskidV : the semi-static key identifier for the communication partner (⊥ if no key is used)

In the preshared-secret (MS-PSKE) variant, ListS instead contains the following extra entries:

• k ∈ N: the index of the preshared secret used in a protocol run with the communication partner

• pss ∈ ({0, 1}∗ ∪ {⊥}): the preshared secret to be used in the session

• psid ∈ ({0, 1}∗ ∪ {⊥}): the preshared secret identifier of the preshared secret to be used in the session

By convention adding a not fully specified tuple (label, U, V, role, auth, sskidU , sskidV) resp. (label, U, V, role,
auth, k, pss, psid) to ListS sets all other entries to their default value. We furthermore write, e.g., label.sid
as shorthand for the element sid in the tuple with (unique) label label in ListS.

3.4 Adversary Model

We consider a probabilistic polynomial-time adversary A which controls the communication between all
parties, enabling interception, injection, and dropping of messages.

As in [FG14, DFGS15a] our model below treats forward and “regular” secrecy simultaneously. A key
is called forward secret if it stays secure even if the long-term secrets involved in its derivation are later
revealed. We say that a protocol provides stage-k forward secrecy if keys from the k-th stage on are
forward secret. Note that forward secrecy refers (only) to disclosure of long-term secrets: if, in the public-
key variant, semi-static keys are revealed we in any case expect keys to look random, except for the ones
in replayable stages. Vice versa, we expect that the compromise of long-term secrets alone (i.e., without
also exposing the semi-static key involved) does not affect keys in (forward-secret) replayable stages. Our
experiment furthermore includes a flag lost (initialized to false) that captures admissibility of adversarial
interactions and conditions where the adversary trivially loses (such as both revealing and testing the
session key in partnered sessions).

The adversary interacts with the protocol via the following queries, which mostly (and sometimes in
verbatim) operate as in [FG14, DFGS15a]:

• NewSecret(U, V, k, psid): This query is only available in the preshared-secret (MS-PSKE) variant.
Generates a fresh preshared secret with identifier psid shared as k-th secret between parties U and V .
If there already is a k-th entry in ~pssU,V or if psid is already registered for any other pss, return ⊥.
The latter ensures global uniqueness of the psid value. Otherwise, sample pss uniformly at random
and store pss and psid as the k-th entry in ~pssU,V and ~pssV,U resp. in ~psidV,U and ~psidV,U .

14

• NewSemiStaticKey(U, sskauxpre): This query is only available in the public-key (MSKE) variant.
Generates a new semi-static key pair (sspk, sssk) for identity U with associated (protocol-defined)
auxiliary data sskaux (which might include some adversarially pre-specified parts sskauxpre) and a
(unique) new identifier sskid. Set stssk,sskid ← fresh and return the tuple (sskid, sspk, sskaux).

• NewSession(U, V, role, auth, sskidU , sskidV) or NewSession(U, V, role, auth, k): The first query is only
used in the public-key (MSKE) variant, the second query only in the preshared-secret (MS-PSKE)
variant. Creates a new session with a (unique) new label label for participant identity U with role
role, having V as intended partner (potentially unspecified, indicated by V = ∗) and aiming at
authentication type auth ∈ AUTH.
In the public-key variant, sskidU and sskidV indicate the semi-static key identifiers used by each side.
Either semi-static key identifier can also be left unspecified (sskidU = ⊥ resp. sskidV = ⊥), indicating
that the according party does not use such key. In the preshared secret variant, k indicates the key
index of the shared pss between U and V . If no such pss has been registered, return ⊥. Otherwise,
set label.pss to pss and label.psid to the corresponding k-th entry of ~psidU,V . Add (label, U, V, role,
auth, sskidU , sskidV) resp. (label, U, V, role, auth, k, pss, psid) to ListS and return label.

• Send(label,m): Sends a message m to the session with label label.
If there is no tuple with label label in ListS, return ⊥. Otherwise, run the protocol on behalf of U
on message m and return the response and the updated state of execution label.stexec. As a special
case, if label.role = initiator and m = init, the protocol is initiated (without any input message).
If, during the protocol execution, the state of execution changes to acceptedi for some i, the pro-
tocol execution is immediately suspended and acceptedi is returned as result to the adversary.
The adversary can later trigger the resumption of the protocol execution by issuing a special
Send(label, continue) query. For such a query, the protocol continues as specified, with the party
creating the next protocol message and handing it over to the adversary together with the resulting
state of execution stexec. We note that this is necessary to allow the adversary to test such a key,
before it may be used immediately in the response and thus cannot be tested anymore for triviality
reasons.
If the state of execution changes to label.stexec = acceptedi for some i and there is a partnered session
label′ in ListS (i.e., label.sidi = label′.sidi) with label′.stkey,i = revealed, then, for key independence,
label.stkey,i is set to revealed as well, whereas for key-dependent security, all label.stkey,i′ for i′ ≥ i are
set to revealed. The former corresponds to the case that session keys of partnered sessions should be
considered revealed as well, the latter implements that for key dependency all subsequent keys are
potentially available to the adversary, too.
If the state of execution changes to label.stexec = acceptedi for some i and there is a partnered session
label′ in ListS (i.e., label.sidi = label′.sidi) with label′.testedi = true, then set label.testedi ← true and
(only if USEi = internal) label.Ki ← label′.Ki. This ensures that, if the partnered session has been
tested before, subsequent Test queries for the session are answered accordingly and, in case it is used
internally, this session’s key Ki is set consistently8.
If the state of execution changes to label.stexec = acceptedi for some i and the intended communication
partner V 6= ∗ is corrupted, then set label.stkey,i ← revealed.

• Reveal(label, i): Reveals label.Ki, the session key of stage i in the session with label label.
8Note that for internal keys this implicitly assumes the following property of the later-defined Match security: Whenever

two partnered sessions both accept a key in some stage, these keys will be equal.

15

If there is no session with label label in ListS, or label.stage < i, or label.testedi = true, then return
⊥. Otherwise, set label.stkey,i to revealed and provide the adversary with label.Ki.
If there is a partnered session label′ in ListS (i.e., label.sidi = label′.sidi) with label′.stage ≥ i, then
label′.stkey,i is set to revealed as well. This means the i-th session keys of all partnered sessions (if
established) are considered revealed too.
As above, in the case of key-dependent security, since not yet established future keys depend on
the revealed key, we cannot ensure their security anymore (neither in this session in question, nor
in partnered sessions). Therefore, if label.stage = i, set label.stkey,j = revealed for all j > i, as they
depend on the revealed key. For the same reason, if a partnered session label′ (label.sidi = label′.sidi)
has label′.stage = i, then set label′.stkey,j = revealed for all j > i. Note that if however label′.stage > i,
then keys label′.Kj for j > i derived in the partnered session are not considered to be revealed by
this query since they have been accepted previously, i.e., prior to Ki being revealed in this query.

• RevealSemiStaticKey(sskid): This query is only available in the public-key (MSKE) variant. If there
exists a semi-static key pair (sspk, sssk) with identifier sskid, set stssk,sskid ← revealed, and output sssk.
Furthermore, for each session label with label.sskidU = sskid or label.sskidV = sskid and all replayable
stages i ∈ {1, . . . ,M} with REPLAYi = replayable, set label.stkey,i to revealed. That is, any replayable
stage’s session key in a session that uses the revealed semi-static key is considered to be disclosed.

• Corrupt(U) or Corrupt(psid): The first query is only used in the public-key (MSKE) variant, the second
query only in the preshared-secret (MS-PSKE) variant. Provide the adversary with the corresponding
long-term secret, i.e., skU (MSKE) resp. pss corresponding to psid (MS-PSKE). No further queries are
allowed to sessions owned by U (MSKE) resp. to any session label with label.psid = psid (MS-PSKE).
In the non-forward-secret case, for each session label owned by U (MSKE) resp. holding label.psid =
psid (MS-PSKE) and for all i ∈ {1, . . . ,M}, set label.stkey,i to revealed. In this case, all (previous and
future) session keys are considered to be disclosed.
In the case of stage-j forward secrecy, stkey,i of such sessions label is instead set to revealed only if
i < j or if i > stage. This means that session keys before the j-th stage (where forward secrecy kicks
in) as well as keys that have not yet been established are potentially disclosed.
Independent of the forward secrecy aspect, in the case of key-dependent security, setting the relevant
key states to revealed for some stage i is done by internally invoking Reveal(label, i), ignoring the
response and also the restriction that a call with i > stage would immediately return ⊥. This
ensures that follow-up revocations of keys that depend on the revoked keys are carried out correctly.

• Test(label, i): Tests the session key of stage i in the session with label label. In the security game
this oracle is given a uniformly random test bit btest as state which is fixed throughout the game.
If there is no session with label label in ListS or if label.stexec 6= acceptedi or label.testedi = true,
return ⊥. If there is a partnered session label′ in ListS (i.e., label.sidi = label′.sidi) with label′.stexec 6=
acceptedi, set the ‘lost’ flag to lost ← true. This ensures that keys can only be tested once and if
they have just been accepted but not used yet, including ensuring any partnered session that may
have already established this key has not used it.
If label.authi = unauth or if label.authi = unilateral and label.role = responder, but there is no
session label′ (for label 6= label′) in ListS with label.cidi = label′.cidi, then set lost ← true. This
ensures that having an honest contributive partner is a prerequisite for testing responder sessions

16

in an unauthenticated or unilaterally authenticated stage and for testing an initiator session in an
unauthenticated stage.9

Otherwise, set label.testedi to true. If the test bit btest is 0, sample a key K $←− D at random from the
session key distribution D. If btest = 1, let K ← label.Ki be the real session key. If USEi = internal
(i.e., the tested i-th key is indicated as being used internally), set label.Ki ← K, i.e., we substitute
an internally used session key by the random and independent test key K which is also used for
consistent future deployments within the key exchange protocol. In contrast, externally used session
keys are not replaced by random ones, the adversary only receives the real (in case btest = 1) or
random (in case btest = 0) key. This distinction between internal and external keys for Test queries
emphasizes that external keys are not supposed to be used within the key exchange (and hence there
is no need to register the tested random key in the protocol’s session key field) while internal keys
will be used (and hence the tested random key must be deployed in the remaining protocol steps for
consistency).
Moreover, if there exists a partnered session label′ which has also just accepted the i-th key (i.e.,
label.sidi = label′.sidi and label.stexec = label′.stexec = acceptedi), then also set label′.testedi ← true
and (only if USEi = internal) label′.Ki ← label.Ki to ensure consistency (of later tests and (internal)
key usage) in the special case that both label and label′ are in state acceptedi and, hence, either of
them can be tested first.
Return K.

Secret compromise paradigm. Our model captures the leakage of long-term secret keys and output
session keys as well as the leakage of semi-static keys (in the public-key variant), following the paradigm of
Bellare and Rogaway [BR94] to capture the compromise of long(er)-lived secret inputs and key outputs of a
key exchange protocol. We note that other classical key exchange models by Canetti and Krawczyk [CK01]
resp. LaMacchia et al. [LLM07] further capture the leakage of internal session state or ephemeral secret
inputs, which we do not, and against most of which TLS 1.3 also does not aim to protect.

Revisiting and adopting the discussion on the TLS 1.3 full handshake by Dowling et al. [DFGS15a],
this means that in the context of the TLS 1.3 0-RTT handshakes we consider the leakage of:

• Long-term keys (i.e., the signing key of the server or client and their preshared (resumption) secrets).
This is allowed since usage of keys over a long time period induces a substantial risk of compromise,
spawning the notion of forward secrecy. Leakage of long-term keys is modeled by the Corrupt query.

• Session keys (i.e., tkehs, tkead, tkhs, tkapp, RMS, and EMS).
This is allowed since session keys are the actual output of a key exchange, used in a follow-up
protocol (e.g., for encryption, resumption, or key export in TLS 1.3) or internally in a subsequent
key exchange step (treated in our key independence notion). Leakage of session keys is modeled by
the Reveal query.

• Semi-static keys (i.e., s in gs for the DH-based 0-RTT mode).
This is allowed since these keys are meant to be used (by servers) in several connections with multiple
clients and over a potentially significant time span. Furthermore, their leakage affect the security of
derived replayable keys. Leakage of semi-static keys is modeled by the RevealSemiStaticKey query.

We do not permit the leakage of:
9Note that ListS entries are only created for honest sessions, i.e., sessions generated by NewSession queries.

17

• Ephemeral secrets (e.g., the randomness in the signature algorithm or the (ephemeral) Diffie–Hellman
exponents x and y).
This is disallowed as TLS 1.3 does not aim (neither achieves) being secure against compromises of
this kind.10

• Internal values / session state (e.g., the master secret MS or internal MAC keys FSC, FSS).
This is disallowed as, again, TLS 1.3 does not provide protection against such leakage.

3.5 Security of Multi-Stage Key Exchange Protocols

The security properties for multi-stage key exchange protocols are almost identical with those given for
the TLS 1.3 full and resumption handshake analysis by Dowling et al. [DFGS15a]; split into two games
following Fischlin and Günther [FG14] and Brzuska et al. [BFWW11, Brz13]. On the one hand, Match
security ensures that the session identifiers sid effectively match the partnered sessions. On the other hand,
Multi-Stage security ensures Bellare–Rogaway-like key secrecy.

For the analysis of the TLS 1.3 0-RTT handshakes, most changes in the model are already reflected in
the specification of the adversarial queries. Beyond introducing the new protocol-specific properties and
the RevealSemiStaticKey query in the definition, we only extend the Match security definition in order to
allow for multiple sessions being partnered in replayable stages.

3.5.1 Match Security

The notion of Match security—which we adapt from [DFGS15a, DFGS16] to capture replayable stages—
ensures soundness of the session identifiers sid, i.e., that they properly identify the partnered sessions in
the sense that

1. sessions with the same session identifier for some stage hold the same key at that stage,

2. sessions with the same session identifier for some stage agree on that stage’s authentication level,

3. sessions with the same session identifier for some stage share the same contributive identifier at that
stage,

4. sessions are partnered with the intended (authenticated) participant, and for mutual authentication
share the same key index,

5. session identifiers do not match across different stages, and

6. at most two sessions have the same session identifier at any non-replayable stage.

The Match security game GMatch
KE,A thus is defined as follows.

Definition 3.1 (Match security). Let KE be a multi-stage key exchange protocol with properties (M,AUTH,
USE,REPLAY) and a PPT adversary A interacting with KE via the queries defined in Section 3.4 in the
following game GMatch

KE,A :
10To be precise, the OPTLS key exchange protocol underlying the TLS 1.3 handshake actually maintains secrecy of the

application traffic key tkapp even under exposure of the server’s ephemeral Diffie–Hellman exponent y, given that the client’s
exponent x as well as the server’s semi-static key exponent s remain secret, as analyzed by Krawczyk and Wee [KW15, KW16].
We omitted capturing one-sided ephemeral secret leakage in our model in order to not further increase its complexity, but
conjecture a similar result can be obtained (for tkapp, RMS, and EMS) in the multi-stage setting for the TLS 1.3 (EC)DHE
0-RTT handshake in draft-12.

18

Setup. In the public-key variant (MSKE), the challenger generates long-term public/private-key pairs for
each participant U ∈ U .

Query. The adversary A receives the generated public keys (MSKE) and has access to the queries NewSecret,
NewSemiStaticKey, NewSession, Send, Reveal, RevealSemiStaticKey, and Corrupt.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GMatch
KE,A = 1, if at least one of the following conditions hold:

1. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈ {1,
. . . ,M}, label.stexec 6= rejectedi, and label′.stexec 6= rejectedi, but label.Ki 6= label′.Ki. (Different
session keys in some stage of partnered sessions.)

2. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈ {1,
. . . ,M}, but label.authi 6= label′.authi. (Different authentication types in some stage of partnered
sessions.)

3. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈ {1,
. . . ,M}, but label.cidi 6= label′.cidi or label.cidi = label′.cidi = ⊥. (Different or unset contributive
identifiers in some stage of partnered sessions.)

4. There exist two distinct labels label, label′ such that label.sidi = label′.sidi 6= ⊥ for some stage i ∈
{1, . . . ,M}, label.authi = label′.authi ∈ {unilateral,mutual}, label.role = initiator, and label′.role =
responder, but label.V 6= label′.U or (only if label.authi = mutual) label.U 6= label′.V or (only for
MS-PSKE and if label.authi = mutual) label.k 6= label′.k. (Different intended authenticated partner
or (only MS-PSKE) different key indices in mutual authentication.)

5. There exist two (not necessarily distinct) labels label, label′ such that label.sidi = label′.sidj 6= ⊥ for
some stages i, j ∈ {1, . . . ,M} with i 6= j. (Different stages share the same session identifier.)

6. There exist three distinct labels label, label′, label′′ such that label.sidi = label′.sidi = label′′.sidi 6= ⊥
for some stage i ∈ {1, . . . ,M} with REPLAYi = nonreplayable. (More than two sessions share the
same session identifier in a non-replayable stage.)

We say KE is Match-secure if for all PPT adversaries A the following advantage function is negligible in
the security parameter:

AdvMatch
KE,A := Pr

[
GMatch

KE,A = 1
]
.

3.5.2 Multi-Stage Security

The second notion, Multi-Stage security, captures Bellare–Rogaway-like key secrecy in the multi-stage
setting as follows.

Definition 3.2 (Multi-Stage security). Let KE be a multi-stage key exchange protocol with key distri-
bution D and properties (M,AUTH,USE,REPLAY), and A a PPT adversary interacting with KE via the
queries defined in Section 3.4 within the following game GMulti-Stage,D

KE,A :

Setup. The challenger chooses the test bit btest
$←− {0, 1} at random and sets lost← false. In the public-key

variant (MSKE), it furthermore generates long-term public/private-key pairs for each participant U ∈
U .

19

Query. The adversary A receives the generated public keys (MSKE) and has access to the queries NewSecret,
NewSemiStaticKey, NewSession, Send, Reveal, RevealSemiStaticKey, Corrupt, and Test. Note that such
queries may set lost to true.

Guess. At some point, A stops and outputs a guess b.

Finalize. The challenger sets the ‘lost’ flag to lost← true if there exist two (not necessarily distinct) labels
label, label′ and some stage i ∈ {1, . . . ,M} such that label.sidi = label′.sidi, label.stkey,i = revealed,
and label′.testedi = true. (Adversary has tested and revealed the key in a single session or in two
partnered sessions.)

We say that A wins the game, denoted by GMulti-Stage,D
KE,A = 1, if b = btest and lost = false. Note that the

winning conditions are independent of key dependency, forward secrecy, and authentication properties of
KE, as those are directly integrated in the affected (Reveal and Corrupt) queries and the finalization step of
the game; for example, Corrupt is defined differently for non-forward-secrecy versus stage-j forward secrecy.

We say KE is Multi-Stage-secure in a key-dependent resp. key-independent and non-forward-secret resp.
stage-j-forward-secret manner with concurrent authentication types AUTH, key usage USE, and replayabil-
ity property REPLAY if KE is Match-secure and for all PPT adversaries A the following advantage function
is negligible in the security parameter:

AdvMulti-Stage,D
KE,A := Pr

[
GMulti-Stage,D

KE,A = 1
]
− 1

2 .

4 The TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshake
Protocols

Starting from draft-13, TLS 1.3 only specifies PSK-based 0-RTT handshake modes, abandoning the
(EC)DHE-based variant predominant in earlier drafts. We hence first analyze the preshared-key–based
variants, PSK(-only) 0-RTT and PSK-(EC)DHE 0-RTT, as specified in TLS 1.3 draft-14 [Res16d]. In
the PSK 0-RTT mode, keys are solely derived from a beforehand established pre-shared key (usually the
resumption master secret RMS derived in a full TLS 1.3 handshake). In the PSK-(EC)DHE 0-RTT mode,
(elliptic curve) Diffie–Hellman shares additionally enter the key derivation. Our analysis of the purely
Diffie–Hellman-based (EC)DHE 0-RTT mode (of draft-12) is stated later in Sections 6 and 7.

The TLS 1.3 0-RTT handshake protocols can be conceptually subdivided into four phases:

Key exchange. In the key exchange phase, parties negotiate the ciphersuites and key-exchange param-
eters to be used and establish shared key material as well as traffic keys to encrypt the remaining
handshake.

0-RTT. In the 0-RTT (data) phase, which is interleaved with the key exchange phase, the client can
send application data already in its first flight. For this purpose, traffic keys for encrypting the early
handshake and application data are established.11

Server parameters. In the server parameters phase, further handshake parameters (as, e.g., whether
client authentication is demanded) are fixed by the server.

Authentication. In the authentication phase, both the server and client can (based on the aspired
authentication) authenticate, verify that they share the same view of the handshake, and derive
(authenticated) application traffic keys.

20

Client Server
PSK← HKDF.Expand(RMS, label1)
rctxt← HKDF.Expand(RMS, label2)

ClientHello: rc $←− {0, 1}256

+ ClientEarlyData: ticket_age
+ ClientPreSharedKey: psk_id1, . . .
[+ ClientKeyShare: X ← gx]†

ES← HKDF.Extract(0,PSK)
H1 ← H(CH)||H(rctxt)

ETS← HKDF.Expand(ES, label3||H1)
tkehs ← HKDF.Expand(ETS, label4) stage 1

(ClientFinished0):
FS0-RTT ← HKDF.Expand(ETS, label5)

CF0 ← HMAC(FS0-RTT, H1)
check CF0 = HMAC(FS0-RTT, H1)

tkead ← HKDF.Expand(ETS, label6) stage 2

record layer (application data), using AEAD with key tkead

ServerHello: rs $←− {0, 1}256

+ ServerEarlyData
+ ServerPreSharedKey: psk_id

[+ ServerKeyShare: Y ← gy]†

H2 ← H(CH||SH)||H(rctxt)
[DHE← Y x]† [DHE← Xy]†[DHE← 0]�

HS← HKDF.Extract(ES,DHE)
HTS← HKDF.Expand(HS, label7||H2)
tkhs ← HKDF.Expand(HTS, label8) stage 3

{EncryptedExtensions}
H3 ← H(CH||SH||EE)||H(rctxt)

FSS ← HKDF.Expand(HTS, label9)
{ServerFinished}:

SF← HMAC(FSS, H3)
check SF = HMAC(FSS, H3)

H4 ← H(CH||SH||EE||SF)||H(rctxt)
FSC ← HKDF.Expand(HTS, label5)

{ClientFinished}:
CF← HMAC(FSC, H4)

check CF = HMAC(FSC, H4)
H5 ← H(CH||SH||EE||SF||CF)||H(rctxt)

MS← HKDF.Extract(HS, 0)
TS← HKDF.Expand(MS, label10||H4)
tkapp ← HKDF.Expand(TS, label11) stage 4

EMS← HKDF.Expand(MS, label12||H5) stage 5

record layer (application data), using AEAD with key tkapp

RMS
(from previous handshake)

Exp

PSK

Ext

ES

0

ExpETS

H1

DHE

Ext

HSExpHTS

H2

Ext

MS

0

ExpTS

H4

Exp

FS0-RTT

Exp

FSS

Exp

FSC

Exptkehs

(stage 1)

Exptkead

(stage 2)

Exptkhs

(stage 3)

Exptkapp

(stage 4)

ExpEMS
(stage 5)

H5

Protocol flow legend
MSG: Y TLS 1.3 message MSG containing Y
(MSG) message MSG AEAD-encrypted with tkehs

{MSG} message MSG AEAD-encrypted with tkhs

+ MSG message sent as extension within previous message
[. . .]† message/computation only in PSK-(EC)DHE 0-RTT
[. . .]� message/computation only in PSK 0-RTT
Key schedule legend
Ext / Exp HKDF.Extract resp. HKDF.Expand function
X salt input X to Ext resp. context info input X to Exp

(label inputs to Exp are omitted)

Figure 2: The TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT handshake protocols (left) and key
schedule (right).

21

We illustrate the protocol flow (with the cryptographically relevant computations) and the key schedule
for both the PSK(-only) and PSK-(EC)DHE 0-RTT handshakes in Figure 2. The handshake messages are
the following:

• ClientHello (CH)/ServerHello (SH) contains random nonces rc / rs of the respective parties, as
well as negotiation parameters (supported versions and ciphersuites). Several extensions can be
sent along with the Hello messages; the PSK and PSK-(EC)DHE 0-RTT handshakes require the
following two resp. three extensions to be included.

• ClientEarlyData (CEAD)/ServerEarlyData (SEAD) are extensions sent to announce a 0-RTT hand-
shake. The client includes the (masked) age ticket_age of the (ticket issuing the) used resumption
secret. The server signals accepting the 0-RTT exchange with an empty ServerEarlyData extension.
TLS 1.3 draft-14 [Res16d, Section 4.2.6.2] recommends that servers should use the ticket_age
value to check that client messages are not replayed. Depending on how well clocks are synchronized,
this can prevent delayed replays, but not immediate replays. We do not rely on this check in our
analysis but conservatively treat the 0-RTT key exchange messages as arbitrarily replayable.

• ClientPreSharedKey (CPSK)/ServerPreSharedKey (SPSK) are extensions in which the client an-
nounces one (or multiple) pre-shared key identifier(s) (psk_id), of which the server selects one to
be used as the pre-shared secret (pss) in the handshake. Focusing on 0-RTT handshakes only, we
only consider the case where client and server agree on the first announced psk_id, the one used to
derive 0-RTT keys.

• ClientKeyShare (CKS)/ServerKeyShare (SKS) are extensions sent only for the PSK-(EC)DHE 0-
RTT handshake. They contain the ephemeral Diffie–Hellman shares X = gx resp. Y = gy for several
(in case of the client) or one group (the server decided for).

Based on these messages both sides can already derive the 0-RTT keys. First, from the shared pre-
shared secret (the resumption master secret established in a previous handshake) pss = RMS a pre-shared
key PSK and a resumption context value rctxt are derived using the Expand component of HKDF [Kra10].
In the key derivation, PSK serves as the starting secret while rctxt binds the derived keys to the previous
handshake that established RMS. Then, the early secret ES is computed from PSK using HKDF.Extract.
Via an intermediate (expanded) early traffic secret ETS both the 0-RTT handshake and application traffic
keys tkehs and tkead are finally expanded.

For the two HKDF functions we use the following common notation: Function HKDF.Extract(XTS,SKM)
obtains as input a (not necessarily secret and potentially fixed) extractor salt XTS and some source key
material SKM, and outputs a pseudorandom key PRK. Function HKDF.Expand(PRK,CTXinfo) ob-
tains as input a pseudorandom key PRK (here: the output of the Extract step) and some (potentially
empty) context information CTXinfo, and outputs some key material KM.12 Both functions are based on
HMAC [BCK96].

The client then completes its first flight by sending a 0-RTT Finished message, sent encrypted un-
der tkehs:

• ClientFinished0 (CF0) consists of an HMAC (message authentication code) value which is com-
puted using the 0-RTT finished secret FS0-RTT on the (hashed) 0-RTT messages and the resumption
context rctxt.

11For comparison, omitting the 0-RTT phase essentially yields the TLS 1.3 full resp. PSK-based handshake.
12We assume the third, output-length parameter L in the Expand function to be fixed to L = λ for our security parameter λ

and hence always omit it.

22

Following ClientFinished0, the client can use tkead to encrypt and send 0-RTT application data.13
After receiving the client’s first flight, the server sends its ServerHello message along with the indicated

extensions. At this point (resp. after receiving ServerHello for the client) both sides extract from ES the
handshake secret HS (incorporating the joint Diffie–Hellman share DHE = gxy in the PSK-(EC)DHE 0-
RTT handshake). Again via first expanding an intermediate handshake traffic secret HTS, the handshake
traffic key tkhs is derived.

Server and client then complete the handshake by sending the following messages encrypted under tkhs:

• EncryptedExtensions (EE), sent by the server, allows to specify further extensions.

• ClientFinished (CF)/ServerFinished (SF) contain an HMAC value over the handshake hash, keyed
with the client resp. server finished secret FSC/FSS which are both expanded from the handshake
traffic secret HTS.

At the end of the handshake, the master secret MS is extracted from HS and used to expand the
application traffic key tkapp (via an intermediate traffic secret TS), used to protect the (non–0-RTT)
application data sent, as well as the exporter master secret EMS which can be used to derive further key
material outside of TLS.

On client authentication, 0.5-RTT data, and post-handshake messages. When analyzing the
(PSK-based) 0-RTT handshake candidates for TLS 1.3, we focus on the main components of the handshake
and hence do not capture the following more advanced options specified in draft-14.

First, the server can optionally ask the client to authenticate (beyond the shared secret key) by sending
a public-key certificate and signing the transcript (i.e., by signature-based authentication as employed in
the (EC)DHE-based handshakes of TLS 1.3).14 We omit this option in our analysis but note that our
multi-stage key exchange model can in principle be augmented to capture combined authentication under
multiple long-term secrets.

Second, instead of deriving the application traffic key tkapp at the end of the handshake (as depicted
in Figure 2), the server might already do so after sending the ServerFinished message in order to send
so-called 0.5-RTT data directly following his flight, i.e., without waiting for the ClientFinished response.
We omit analyzing this variant of the handshake but expect that results for it with potentially weaker
authentication guarantees for tkapp can be obtained in our model.

Third, TLS 1.3 introduces post-handshake messages that can be sent (potentially long) after the initial
handshake was completed in order to update the used traffic key, authenticate the client, or issue tickets for
session resumption. Here, we focus on the main handshake and do not consider post-handshake messages.

5 Security of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT
Handshakes

Our security analysis of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT handshakes (draft-14-PSK-0RTT
resp. draft-14-PSK-DHE-0RTT) is carried out in the preshared-secret variant (MS-PSKE) of the multi-stage
key exchange model. We begin with stating the protocol-specific properties (M,AUTH,USE,REPLAY)
mostly shared by both handshakes:

13The server may decide to not derive any 0-RTT keys (and not accept any 0-RTT data). In that case it would, in our
model, simply set the first two session identifiers sid1, sid2 and keys K1, K2 to ⊥ and continue with deriving the third key.

14There is also discussion to further include signature-based server authentication in the PSK-based 0-RTT hand-
shakes [Res16a].

23

• M = 5: the PSK-based 0-RTT handshakes have five stages (deriving, in that order, keys tkehs, tkead,
tkhs, tkapp, and EMS).

• the authentication properties AUTH differ between the PSK(-only) and the PSK-(EC)DHE 0-RTT
handshakes:

– for PSK 0-RTT, AUTH =
{
(mutual,mutual,mutual,mutual,mutual)

}
: all keys established are

mutually authenticated (wrt. the established pre-shared secret).
– for PSK-(EC)DHE 0-RTT, AUTH =

{
(mutual,mutual, unauth,mutual,mutual)

}
: the handshake

traffic key tkhs is unauthenticated, all other keys are mutually authenticated (wrt. the estab-
lished pre-shared secret).15

• USE = (internal, external, internal, external, external): the (0-RTT and main) handshake traffic keys tkehs
and tkhs are used to protect messages within the handshake while the application traffic keys tkead
and tkapp as well as the exporter master secret EMS are only used externally.

• REPLAY = (replayable, replayable, nonreplayable, nonreplayable, nonreplayable): the 0-RTT stages 1
and 2 are replayable, the other stages are not.

Both TLS 1.3 draft-14 PSK-based 0-RTT handshakes enjoy key independence for all keys. Expectedly,
the PSK(-only) 0-RTT handshake provides no forward secrecy. The PSK-(EC)DHE 0-RTT handshake
instead ensures forward secrecy for the non–0-RTT keys (i.e., from stage 3 on), but not for the 0-RTT
keys.

Session matching is defined via the following session identifiers, consisting of the unencrypted messages
exchanged up to each stage:

sid1 = (ClientHello),
sid2 = (sid1, “EAD”),
sid3 = (ClientHello, ServerHello),
sid4 = (ClientHello, ServerHello, EncryptedExtensions, ServerFinished), and
sid5 = (ClientHello, ServerHello, EncryptedExtensions, ServerFinished, ClientFinished).

Here, Hello messages also comprise the sent EarlyData, KeyShare, and PreSharedKey extensions. We
remark that, as for the analysis of the TLS 1.3 full and resumption handshake [DFGS15a], we too define
the session identifiers over the unencrypted messages. This diverges from the common practice to set the
session identifier as the concatenation of the (here encrypted) protocol transmissions, but is necessary to
achieve key independence in the multi-stage security for such protocols.

For the contributive identifiers, we need to ensure that a server session can in any case be tested
when receiving an honest client contribution (even if that client never receives the ServerHello response),
analogously to the full handshake analysis in [DFGS15a]. Hence, for stage 3, on sending resp. receiving
the ClientHello message, client resp. server initially sets cid3 = (ClientHello) and subsequently, on
receiving (resp. sending) the ServerHello message, extend it to cid3 = (ClientHello, ServerHello). All
other contributive identifiers are set to cidi = sidi when the respective stage’s session identifier is set.

We are now ready to state our security results for the PSK and PSK-DHE 0-RTT handshakes of
TLS 1.3 draft-14. Naturally, the proof aspects concerning the non–0-RTT parts of the handshakes are
structurally close to the proofs for the draft-10 PSK-based handshakes by Dowling et al. [DFGS16], but
need to take the modified key schedule into account.

15Although including the pre-shared secret in the derivation of tkhs, as the involved Diffie–Hellman shares are only authenti-
cated after its derivation, tkhs cannot enjoy both forward secrecy and mutual authentication. We remark that alternatively to
considering tkhs being unauthenticated but forward-secret (a security property close to the notion of “weak (perfect) forward
secrecy” [Kra05]), one might instead also consider tkhs to be non–forward-secret but mutually authenticated.

24

5.1 PSK(-only) 0-RTT Handshake

Theorem 5.1 (Match security of draft-14-PSK-0RTT). The draft-14 PSK 0-RTT handshake is Match-
secure: for any efficient adversary A we have

AdvMatch
draft-14-PSK-0RTT,A ≤ n2

s · 2−|nonce|,

where ns is the maximum number of sessions and |nonce| = 256 is the bit-length of the nonces.

Proof. We need to prove six properties for Match security.

1. Sessions with the same session identifier for some stage hold the same key at that stage.
Containing the ClientHello message, all session identifiers fix the used pre-shared secret identi-
fier psk_id and hence the used secret pss = RMS, determining the values PSK and rctxt. Each
stage’s session identifier moreover contains all messages included in the (handshake) hashes used in
the key derivation of that stage’s key, which is hence uniquely determined by the session identifier.

2. Sessions with the same session identifier for some stage agree on that stage’s authentication level.
This trivially holds as the PSK 0-RTT handshake fixes mutual authentication for all stages.

3. Sessions with the same session identifier for some stage share the same contributive identifier.
For stages i ∈ {1, 2, 4, 5, 6} this follows immediately from sidi = cidi. For stage 3, the contributive
identifier is set to its final value cid3 = sid3 when both sides set the session identifier.

4. Sessions are partnered with the intended (authenticated) participant and (for mutual authentication)
share the same key index.
As honest sessions only used their own pre-shared secret identifier psk_id, this value included (via
ClientHello) in all session identifiers ensures agreement of both the intended partner and key index.

5. Session identifiers do not match across different stages.
This holds trivially since session identifiers sid1 and sid3–sid5 contain distinct (non-optional) messages
and sid2 includes a separating identifier.

6. At most two sessions have the same session identifier at any non-replayable stage.
We only need to consider the non-replayable stages 3–5 here.16 The according session identifiers
contain (through the Hello messages) randomly chosen nonces nc and ns (of bit-length |nonce| = 256)
from each side, one of which a third session would need to pick by coincidence. This probability can
be upper-bounded by n2

s · 2−|nonce| for ns being the maximum number of sessions.

Theorem 5.2 (Multi-Stage security of draft-14-PSK-0RTT). The draft-14 PSK 0-RTT handshake is
Multi-Stage-secure in a key-independent and non–forward-secret manner with properties (M,AUTH,USE,
REPLAY) given above. Formally, for any efficient adversary A against the Multi-Stage security there exist
efficient algorithms B1, . . . , B9 such that

AdvMulti-Stage,D
draft-14-PSK-0RTT,A ≤ 5ns ·

(
AdvCOLL

H,B1 + np ·
(
AdvPRF-sec

HKDF.Expand,B2 + AdvHMAC(0,$)-$
HMAC,B3

+ AdvPRF-sec
HMAC,B4

+ AdvPRF-sec
HKDF.Expand,B5 + AdvPRF-sec

HMAC,B6 + AdvPRF-sec
HKDF.Expand,B7

+ AdvPRF-sec
HKDF.Expand,B8 + AdvPRF-sec

HKDF.Expand,B9

))
,

where ns is the maximum number of sessions and np is the maximum number of pre-shared secrets.
16Observe that an adversary can indeed replay the client’s first messages to multiple server sessions, resulting in the same

session identifier and derived keys.

25

Proof. We first restrict the adversary A to a single Test query. By a hybrid argument (following the
detailed one for the full handshake proof by Dowling et al. [DFGS15b, Appendix A]) this reduces A’s
advantage by a factor at most 1/5ns for the five stages in the at most ns sessions. It also allows to speak
about the session label tested at stage i, which we now know in advance.

Our proof then proceeds via the following sequence of games.

Game 0. We begin with G0 identical to the Multi-Stage game restricted to a single test query:

AdvG0
draft-14-PSK-0RTT,A = Adv1-Multi-Stage

draft-14-PSK-0RTT,A.

Game 1. In a first step, we exclude hash collisions by aborting whenever during the execution of honest
sessions the same hash value under hash function H is computed for two distinct inputs. By having an
algorithm B1 act as the challenger in Game 0 and output, when they occur, these two inputs as a collision
for H, we can bound the probability of aborting by B1’s advantage in breaking the collision resistance of H:

AdvG0
draft-14-PSK-0RTT,A ≤ AdvG1

draft-14-PSK-0RTT,A + AdvCOLL
H,B1 .

Game 2. Next, we guess the (index psk_id of the) pre-shared secret pss employed in the tested session
(i.e., the resumption master secret RMS used for this PSK handshake). Aborting on an incorrect guess,
this reduces the advantage of A by a factor of at most the number of pre-shared secrets np:

AdvG1
draft-14-PSK-0RTT,A ≤ np · AdvG2

draft-14-PSK-0RTT,A.

We can now, one at a time, replace the outputs of HKDF.Expand and HKDF.Extract evaluations using
RMS and derived keys by random values, leading to a sequence of according advantage bounds for their
PRF security or randomness bounds of the underling HMAC function.

Game 3. We begin by replacing any HKDF.Expand application using pss = RMS by evaluations of a
(lazy-sampled) random function, which in particular leads to PSK and rctxt being replaced by random
values P̃SK, r̃ctxt $←− {0, 1}λ in the tested (and any partnered) session.

The introduced difference in the advantage of A can be bounded by an adversary B2 against the PRF
security of HKDF.Expand as follows. Algorithm B2 simulates Game 2 faithfully, but uses its PRF oracle
for evaluating HKDF.Expand under RMS. Note that all keys derived in the PSK 0-RTT handshake are
non–forward-secret and hence any (successful) adversary A cannot issue a Corrupt query on pss = RMS
used in the tested session. The employed pre-shared key is hence an unknown and uniformly random value
to A and hence B2 perfectly simulates Game 2 in case its oracle computes HKDF.Expand and Game 3 in
case its oracle is a random function.

This leads to following bound:

AdvG2
draft-14-PSK-0RTT,A ≤ AdvG3

draft-14-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B2 .

Game 4. Next, we replace values ES computed as HKDF.Extract(0, P̃SK) by a random value ẼS $←−
{0, 1}λ, in particular in the tested session and partnered sessions.

Recall that HKDF.Extract(XTS,SKM) is defined as HMAC(XTS,SKM) [Kra10]. Assuming that for
any polynomial-time algorithm B3 it is computationally hard to distinguish HMAC(0,SKM) from X $←−
{0, 1}λ for uniformly random chosen values SKM ∈ {0, 1}λ, we can bound this step by B3’s distinguishing
advantage which we denote by AdvHMAC(0,$)-$

HMAC,B3
. For this, we let B3 simulate Game 3 as the challenger,

26

but using its challenge as ES = HKDF.Extract(0, P̃SK). In case this challenge is HMAC(0,SKM) for
SKM ∈ {0, 1}λ, this simulates Game 3, if the challenge is a uniformly random value X $←− {0, 1}λ, this
simulates Game 4.

We can hence bound this step as

AdvG3
draft-14-PSK-0RTT,A ≤ AdvG4

draft-14-PSK-0RTT,A + AdvHMAC(0,$)-$
HMAC,B3

.

Game 5. We next replace evaluations of HKDF.Expand keyed with ẼS as well as HKDF.Extract using ẼS
as salt by random functions. This in particular replaces, in the tested and partnered sessions, the early
traffic and handshake secret in these sessions by random values ẼTS, H̃S $←− {0, 1}λ.

Observe that in both replaced Extract and Expand evaluations, ẼS is (by definition of HKDF) used to key
the HMAC function, applied to H1 (when expanding ETS) resp. to a fixed value 0 (when extracting HS),
i.e., distinct inputs. We can hence bound the difference in the advantage of A introduced by this step by
the advantage of an adversary B4 against the PRF security of HMAC, having B4 use its PRF oracle to
compute the replaced Expand and Extract evaluations as detailed for Game 3. The resulting bound is thus:

AdvG4
draft-14-PSK-0RTT,A ≤ AdvG5

draft-14-PSK-0RTT,A + AdvPRF-sec
HMAC,B4 .

Note that from now on, ẼTS is independent of any value computed in sessions that are not partnered
(in stage 1 and 2) with the tested session: as such sessions do not hold the same sid1/sid2 and hence not the
same ClientHello and as, by Game 1, there are no hash collisions, no non-partnered session will compute
the same hash value H1 which hence serves as a unique label in the tested and partnered sessions.

Game 6. As the next step, we replace HKDF.Expand evaluations keyed with ẼTS (in the tested and
partnered session) by a lazy-sample random function, in particular replacing in those sessions the early
handshake and data traffic keys as well as the client’s 0-RTT finished secret by random values t̃kehs, t̃kead,
˜FS0-RTT

$←− {0, 1}λ.
Similar to Game 3 the advantage difference induced for A by this step can be bound by the advantage

of an adversary B5 against the PRF security of HKDF.Expand:

AdvG5
draft-14-PSK-0RTT,A ≤ AdvG6

draft-14-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B5 .

Game 7. We again in parallel replace both HKDF.Expand and HKDF.Extract evaluations, this time keyed
resp. salted with H̃S by random function, replacing the handshake traffic secret and master secret with
random values H̃TS, M̃S $←− {0, 1}λ, in particular in the tested and partnered sessions.

As for Game 5, both evaluations are HMAC invocations keyed with H̃S and applied to distinct values
(H2 resp. 0). We can hence likewise bound the advantage difference introduced by the PRF security of
HMAC as

AdvG6
draft-14-PSK-0RTT,A ≤ AdvG7

draft-14-PSK-0RTT,A + AdvPRF-sec
HMAC,B6 .

Again, as sid3 uniquely determines the message inputs to hash value H2 entering the derivation of HTS
and, by Game 1 there are no hash collisions, H̃TS is independent of values computed in sessions not
partnered with the tested session in stage 3.

Game 8. We now replace evaluations of HKDF.Expand using H̃TS (in the tested and partnered sessions)
by a random function, leading to random values t̃khs, F̃SS, F̃SC

$←− {0, 1}λ in those sessions. This step is
again bounded by the PRF security of HKDF.Expand:

AdvG7
draft-14-PSK-0RTT,A ≤ AdvG8

draft-14-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B7 .

27

Game 9. Next, we replace HKDF.Expand evaluations keyed with M̃S by a random function, in particular
leading to uniformly random values T̃S, ẼMS $←− {0, 1}λ in the tested and partnered sessions. These are
moreover independent of any other values computed in sessions not partnered in stages 4 and 5, due to
Game 1 and sid4 and sid5 fixing the inputs to H4 and H5. Again,

AdvG8
draft-14-PSK-0RTT,A ≤ AdvG9

draft-14-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B8 .

Game 10. Finally, we replace the HKDF.Expand evaluations using T̃S (in the tested and partnered
sessions) by a random function, resulting in a random application traffic key t̃kapp

$←− {0, 1}λ, again
bounded by PRF security:

AdvG9
draft-14-PSK-0RTT,A ≤ AdvG10

draft-14-PSK-0RTT,A + AdvPRF-sec
HKDF.Expand,B9 .

In Game 10, all keys derived in the tested session (t̃kehs, t̃kead, t̃khs, t̃kapp, and ẼMS) are now chosen
uniformly at random, making the Test query independent of the test bit btest.

Observe furthermore that replaying a ClientHello message to multiple server sessions leads to all
these sessions being partnered to the originating client session (and hence prevents Reveal queries). In
contrast, sessions that are not partnered with the tested session (even if using the same pre-shared secret)
by definition hold different session identifiers and hence use different handshake hashes (due to Game 1) as
label inputs to HKDF.Expand in the key derivation. The resulting keys therefore are independent random
values themselves, uncorrelated with the keys established in the tested session.

Therefore, A learns no information on the test bit btest and hence

AdvG10
draft-14-PSK-0RTT,A ≤ 0.

5.2 PSK-(EC)DHE 0-RTT Handshake

Theorem 5.3 (Match security of draft-14-PSK-DHE-0RTT). The draft-14 PSK-(EC)DHE 0-RTT hand-
shake is Match-secure: for any efficient adversary A we have

AdvMatch
draft-14-PSK-DHE-0RTT,A ≤ n2

s · 1/q · 2−|nonce|,

where ns is the maximum number of sessions, q is the group order, and |nonce| = 256 is the bit-length of
the nonces.

Proof. For conditions 2–5 of Match security, the arguments are as for the Match security of the PSK(-only)
0-RTT handshake (cf. Theorem 5.1). We hence focus on conditions 1 and 6.

1. Sessions with the same session identifier for some stage hold the same key at that stage.
Beyond the arguments from Theorem 5.1, the ClientHello and ServerHello messages contained in
all session identifiers from stage 3 on also fix the chosen Diffie–Hellman shares gx and gy. This ensures
agreement on HS and hence also on the keys for stages 3–5 derived (also) from these Diffie–Hellman
shares.

6. At most two sessions have the same session identifier at any non-replayable stage.
Again we can focus on the non-replayable stages 3–5 here. For the same argument as in Theorem 5.1,
three (honest) sessions sharing the same session identifier requires (at least) two sessions pick the
same nonce and, for PSK-(EC)DHE, also the same Diffie–Hellman share. We can upper-bound this
probability by n2

s · 1/q · 2−|nonce|, where ns is the maximum number of sessions.

28

Theorem 5.4 (Multi-Stage security of draft-14-PSK-DHE-0RTT). The draft-14 PSK-(EC)DHE 0-RTT
handshake is Multi-Stage-secure in a key-independent and stage-3-forward-secret manner with proper-
ties (M,AUTH,USE,REPLAY) given above. Formally, for any efficient adversary A against the Multi-Stage
security there exist efficient algorithms B1, . . . , B16 such that

AdvMulti-Stage,D
draft-14-PSK-DHE-0RTT,A ≤ 5ns ·

(
AdvCOLL

H,B1

+ np ·
(
AdvPRF-sec

HKDF.Expand,B2 + AdvHMAC(0,$)-$
HMAC,B3

+ AdvPRF-sec
HMAC,B4 + AdvPRF-sec

HKDF.Expand,B5

)
+ ns · np ·

(
AdvPRF-sec

HKDF.Expand,B6 + AdvHMAC(0,$)-$
HMAC,B7

+ AdvPRF-sec
HMAC,B8

+ AdvPRF-sec
HMAC,B9 + AdvPRF-sec

HKDF.Expand,B10 + AdvEUF-CMA
HMAC,B11

)
+ ns · np ·

(
AdvPRF-ODH

HKDF.Extract,G,B12 + AdvPRF-sec
HMAC,B13 + AdvPRF-sec

HKDF.Expand,B14

+ AdvPRF-sec
HKDF.Expand,B15 + AdvPRF-sec

HKDF.Expand,B16

))
,

where ns is the maximum number of sessions and np is the maximum number of pre-shared secrets.

Proof. Again we first restrict the adversary A to a single Test query (for which we now know label and
stage in advance), inducing a security loss of at most 5ns by a hybrid argument.

Game 1. We next exclude hash collisions by aborting the game whenever the challenger would (in honest
sessions) compute the same hash value for distinct inputs. As in Game 1 for Theorem 5.2 the caused
difference in the advantage can be bounded by that of an adversary B1 against the collision resistance of
the hash function:

Adv1-Multi-Stage
draft-14-PSK-DHE-0RTT,A ≤ Adv1-Multi-Stage,no-coll

draft-14-PSK-DHE-0RTT,A + AdvCOLL
H,B1 .

Case separation. Our proof then treats the following three (disjoint) cases separately:

A. the adversary tests a stage-1 or stage-2 key,

B. the adversary tests a stage-i key for i ∈ {3, 4, 5} in a session without honest contributive partner in
the third stage (i.e., there does not exist a session label′ with label.cid3 = label′.cid3 when the Test
query is issued on label), and

C. the adversary tests a stage-i key for i ∈ {3, 4, 5} in a session with honest contributive partner in the
third stage.

Case A. Test in Stage 1–2

In the first proof case we are concerned with a Test query on a 0-RTT key (in stage 1 or 2). As both
stages are non–forward-secret, we know that is this case no Corrupt query can have been issued for the pre-
shared secret pss employed in the tested session (neither before nor after the Test query), as the adversary
would otherwise lose. This allows us to apply the same proof strategy as for the Multi-Stage security of
the draft-14 PSK(-only) 0-RTT handshake in the proof Theorem 5.2. Via the very same sequence of
games G2–G6 (starting after excluding hash collisions) we reach a game where both 0-RTT keys tkehs

29

and tkead are replaced by independent and uniformly random values (leaving the adversary A no change
to win). The introduced differences in advantage of A are bound as for Theorem 5.2 by

Adv1-Multi-Stage,no-coll,test 1–2
draft-14-PSK-DHE-0RTT,A ≤ np ·

(
AdvPRF-sec

HKDF.Expand,B2 + AdvHMAC(0,$)-$
HMAC,B3

+ AdvPRF-sec
HMAC,B4 + AdvPRF-sec

HKDF.Expand,B5

)
,

where B2, . . . , B5 are the reduction algorithms given in the proof of Theorem 5.2.

Case B. Test in Stage 3–5 without Contributive Stage-3 Partner

We now consider the case that the Test query is issued on stage 3–5 in a (client or server) session without
honest contributive partner in stage 3. Since stage 3 is unauthenticated, testing this stage actually leads
to immediately losing the Multi-Stage game, hence we can focus on stages 4 and 5. As we will see, given
the HMAC values in the exchanged Finished messages are unforgeable, we can ultimately exclude that
such Test queries are issued via the following sequence of games.

Game B.0. We begin with the Multi-Stage game restricted to a single Test query in stage 3–5 without
contributive stage-3 partner, where collisions are excluded:

AdvGB.0
draft-14-PSK-DHE-0RTT,A = Adv1-Multi-Stage,no-coll,stage 3–5,no cid3-partner

draft-14-PSK-DHE-0RTT,A .

Game B.1. We now introduce an abortion of the game as soon as a session accepts in stage 4 without
honest contributive partner in stage 3. Denoting this event as abortGB.1,A

acc we can bound the induced
advantage difference of A as∣∣∣AdvGB.0

draft-14-PSK-DHE-0RTT,A − AdvGB.1
draft-14-PSK-DHE-0RTT,A

∣∣∣ ≤ Pr[abortGB.1,A
acc].

Observe that we can immediately bound AdvGB.1
draft-14-PSK-DHE-0RTT,A ≤ 0, as the game aborts before A has

the chance to issue a Test query (recall that Test queries may only be issued to stage 4 or 5 of session
without contributive stage-3 partner). We hence continue by bounding Pr[abortGB.1,A

acc] in the remaining
game sequence.

Game B.2. Next, we guess the first session that accepts in stage 4 without honest contributive stage-3
partner (i.e., the session causing abortGB.1,A

acc) and abort if we guessed incorrectly. Observe that Game B.2
equals Game B.1 for a correct guess and we can hence bound

Pr[abortGB.1,A
acc] ≤ ns · Pr[abortGB.2,A

acc],

where ns is the maximum number of sessions.
Moreover, no Corrupt query can have been issued to the guessed session (or any other session using

the same pre-shared secret pss): On the one hand, sessions stop execution on Corrupt and thus no such
query could have been issued before the guessed session accepted in stage 4 (as otherwise it would not
have accepted). On the other hand, the game aborts when the guessed session accepts in stage 4, so there
is no chance for A to issue a Corrupt query afterwards. The pre-shared secret pss employed in the guessed
session hence remains an unknown, random value for A which we can leverage in the following games.

Game B.3. We can now first guess the pre-shared secret pss = RMS employed in the guessed session.
Aborting on an incorrect guess introduces a factor of at most the number of pre-shared secrets np:

Pr[abortGB.2,A
acc] ≤ np · Pr[abortGB.3,A

acc].

30

Game B.4. Applying to the guessed session the steps introduced in the Games 3, 4, 5, 7, and 8 from
the proof of draft-14 PSK(-only) Multi-Stage security (Theorem 5.2), we (in particular) replace the
values PSK, ES, HS, HTS, and finally FSS and FSC by uniformly random values sampled from {0, 1}λ.
Denoting the resulting game by Game B.4, the introduced advantage difference is bounded as

Pr[abortGB.3,A
acc] ≤Pr[abortGB.4,A

acc]

+ AdvPRF-sec
HKDF.Expand,B6 + AdvHMAC(0,$)-$

HMAC,B7
+ AdvPRF-sec

HMAC,B8 + AdvPRF-sec
HMAC,B9 + AdvPRF-sec

HKDF.Expand,B10 ,

where B6, . . . , B10 are the algorithms B2, B3, B4, B6, and B7 given for Games 3, 4, 5, 7, and 8 in the proof
of Theorem 5.2.

At this point, both server and client finished secrets used in the guessed session are replaced by
uniformly random random values F̃SS resp. F̃SC. As the final step, we show how this allows to turn any
adversary triggering the abortGB.4,A

acc event in Game B.4 into an (EUF-CMA) MAC forger B11 for HMAC.
To this extent, we let B11 act as the challenger in Game B.4, but instead of computing HMAC values using
keys F̃SS or F̃SC on its own, relay them to MAC oracles of two EUF-CMA security instances for HMAC.
As F̃SS and F̃SC are uniformly random values, this provides a sound simulation of Game B.4 for A.

Recall that abortGB.4,A
acc is triggered as soon as the first (guessed) session accepts in stage 4 without

contributive partner in stage 3. This in particular means that there is no session holding the same cid3 =
(ClientHello, ServerHello) value. However, in order for the guessed session to accept in stage 4, it must
have received (within ServerFinished or ClientFinished) an HMAC value on a hash covering also the
messages contained in cid3. As no session holds the same cid3, and as there are no hash collisions (by
Game 1), no honest session will have issued this HMAC value. It hence was not queried to the MAC
oracle in the EUF-CMA security game (used for client resp. server messages) which allows B11 to output
it as a valid forgery in the respective game. Algorithm B11 hence being successful whenever A triggers
abortGB.4,A

acc , this finally bounds
Pr[abortGB.4,A

acc] ≤ AdvEUF-CMA
HMAC,B11 .

In summary, this provides the following advantage bounds for this proof case:

Adv1-Multi-Stage,no-coll,stage 3–5,no cid3-partner
draft-14-PSK-DHE-0RTT,A ≤ ns · np ·

(
AdvPRF-sec

HKDF.Expand,B6 + AdvHMAC(0,$)-$
HMAC,B7

+ AdvPRF-sec
HMAC,B8

+ AdvPRF-sec
HMAC,B9 + AdvPRF-sec

HKDF.Expand,B10 + AdvEUF-CMA
HMAC,B11

)
.

Case C. Test in Stage 3–5 with Contributive Stage-3 Partner

In the last proof case we treat test sessions accepting in stages 3–5 that have an honest contributive partner
in stage 3. In contrast to Case B this in particular allows the (unauthenticated) stage-3 key to be tested.
Our proof strategy is geared towards leveraging the availability of honest Diffie–Hellman shares gx and gy
(through honest cid3-partnering) as source of randomness (unknown to A) which ensures (forward) secrecy
of the keys derived from it in stages 3–5, even if the involved pre-shared secret pss is corrupted.

Game C.0. Our initial game is the Multi-Stage game restricted to a single Test query in stage 3–5 with
contributive stage-3 partner, where collisions are excluded:

AdvGC.0
draft-14-PSK-DHE-0RTT,A = Adv1-Multi-Stage,no-coll,stage 3–5,cid3-partner

draft-14-PSK-DHE-0RTT,A .

Game C.1. We first guess the (index of the) session contributively partnered in stage 3 with the tested
session and abort on an incorrect guess, inducing a factor of ns (the numbers of sessions):

AdvGC.0
draft-14-PSK-DHE-0RTT,A ≤ ns · AdvGC.1

draft-14-PSK-DHE-0RTT,A.

31

Game C.2. Next, we guess the pre-shared secret pss = RMS used in the tested session (and abort on
an incorrect guess), reducing the advantage of A by a factor of np (the number of pre-shared secrets):

AdvGC.1
draft-14-PSK-DHE-0RTT,A ≤ np · AdvGC.2

draft-14-PSK-DHE-0RTT,A.

Game C.3. Knowing the (honest) session that contributes in particular the Diffie–Hellman share to
stage 3 of the tested session and the used pre-shared secret in advance now allows us to encode a Diffie–
Hellman challenge in the shares gx and gy used at the tested session.

If the tested session is a client session, we know that both it and the partnered session guessed in
Game C.1 hold the same shares gx, gy. If the tested session however is a server session, we are not ensured
that the contributive (client) partner from Game C.1 will receive the test session’s share gy unmodified.17
It might instead receive an adversarially-controlled value gy′ for which we then, for a correct simulation,
need to be able to compute gxy′ (while knowing neither x nor y′). To this extent, we model the security
of the HKDF.Extract function deriving HS using ES as salt and DHE = gxy as source key material using
the PRF-ODH assumption [JKSS12] (in its single-query variant). This allows us to replace HS in the
tested session with a random value while still being able to compute the (potentially different) handshake
secret HS′ derived from gxy

′ (for an arbitrary gy′ 6= gy).
More precisely, in Game C.3 we replace the handshake secret HS derived from ES and DHE = gxy

in the tested and (potentially) its partnered session by a uniformly random value H̃S $←− {0, 1}λ. The
introduced advantage difference for A can be bound by the advantage of an algorithm B12 against the
PRF-ODH security of HKDF.Extract (using ES as salt and DHE = gxy as source key material). To this
extent, B12 outputs ES (precomputed from the test session’s pre-shared secret guessed in Game C.2) as
the PRF challenge label. It then employs the obtained Diffie–Hellman shares as values gx and gy in the
ClientKeyShare resp. ServerKeyShare message of the tested session and the contributive stage-3 partner
session (guessed in Game C.1). It furthermore uses the obtained PRF challenge value as the handshake
secret HS in the tested session and, potentially, the partnered session (obtaining the same Diffie–Hellman
shares). In case the guessed contributive partner session from Game C.1 is a client session and obtains,
within ServerKeyShare, a value gy′ 6= gy, B12 leverages its (single) PRF-ODH query to compute HS from
gxy

′ (without knowing x or y′).
Recall that B12 is free to replace values gx and gy in the tested and contributive-partnered session at

will as A can only passively observe them. The simulation B12 provides to A hence equals Game C.2 in
case the PRF challenge value B12 obtains is computed as HKDF.Extract(ES, gxy) while, if the challenge is
a uniformly random value it equals Game C.3. Therefore,

AdvGC.2
draft-14-PSK-DHE-0RTT,A ≤ AdvGC.3

draft-14-PSK-DHE-0RTT,A + AdvPRF-ODH
HKDF.Extract,G,B12 .

Observe that in this reduction we do not rely on (the secrecy of) the early secret ES at all. This in
particular allows ES to be known to A through issuing a Corrupt query on the pre-shared secret pss = RMS
involved in the tested session at any time, thereby ensuring forward secrecy (from stage 3 on).

We complete this proof case by applying to the tested session (and its potential partner) the steps
described for the Games 7, 8, 9, and 10 from the proof of draft-14 PSK(-only) Multi-Stage security
(Theorem 5.2). Thereby, we in particular replace the session keys for stages 3–5, tkhs, tkapp, and EMS,
by independent and uniformly random values sampled from {0, 1}λ. This leaves the adversary A with no
chance to determine btest better than through guessing and hence bounds its advantage in Game C.3 as

AdvGC.3
draft-14-PSK-DHE-0RTT,A ≤ AdvPRF-sec

HMAC,B13 + AdvPRF-sec
HKDF.Expand,B14 + AdvPRF-sec

HKDF.Expand,B15 + AdvPRF-sec
HKDF.Expand,B16 .

17Observe that the server’s MAC value in ServerFinished is only processed after deriving the stage-3 key.

32

where B13, . . . , B16 are the algorithms B6, B7, B8, and B9 given for Games 7, 8, 9, and 10 in the proof of
Theorem 5.2.

To conclude, the advantage bounds for this proof case sum up to:

Adv1-Multi-Stage,no-coll,stage 3–5,cid3-partner
draft-14-PSK-DHE-0RTT,A ≤ ns · np ·

(
AdvPRF-ODH

HKDF.Extract,G,B12 + AdvPRF-sec
HMAC,B13 + AdvPRF-sec

HKDF.Expand,B14

+ AdvPRF-sec
HKDF.Expand,B15 + AdvPRF-sec

HKDF.Expand,B16

)
.

6 The TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake Protocol
The latest TLS 1.3 drafts do not specify a Diffie–Hellman-based ((EC)DHE) 0-RTT handshake anymore,
the last draft doing so is draft-12 [Res16b]. We nevertheless provide a security analysis of this 0-RTT
mode (as specified in draft-12) for two reasons: For one, it is much closer to the QUIC and OPTLS
protocols and our analysis hence enables a comparison with those designs. For another, it provides slightly
stronger forward secrecy properties [Kra16] as reflected in our analysis and may (for that or other reasons)
be re-established as a TLS 1.3 extension [Res16f].

On a high level, the (EC)DHE 0-RTT handshake goes through the same four phases as the PSK-based
0-RTT modes: key exchange, 0-RTT, server parameters, and authentication (cf. Section 5). A notable
difference though is that, in draft-12, the client may perform signature-based authentication in the 0-
RTT step. We provide the protocol flow (and cryptographic computations) as well as the key schedule of
the (EC)DHE 0-RTT handshake in Figure 3 and explain the handshake messages in the following.

• ClientHello (CH)/ServerHello (SH) transmit—as for the PSK 0-RTT handshake—the randomly
chosen nonces rc / rs of the respective parties, as well as negotiation parameters (supported versions
and ciphersuites). Both messages furthermore can include various extension fields; (EC)DHE 0-RTT
in particular requires the following two extensions.

• ClientEarlyData (CEAD)/ServerEarlyData (SEAD) are extensions sent to announce a 0-RTT hand-
shake. For draft-12 (EC)DHE 0-RTT, the client includes an identifier config_id for a previously
obtained server configuration (including a semi-static public key S = gs for which the server holds the
secret exponent s) along with a matching ciphersuite used for deriving (and encrypting under) the
0-RTT keys.18 The server signals accepting the 0-RTT exchange with an empty ServerEarlyData
extension.

• ClientKeyShare (CKS)/ServerKeyShare (SKS) are extension fields that contain the ephemeral Diffie–
Hellman sharesX = gx resp. Y = gy for several (in case of the client) or one group (the server decided
for).

After sending its ClientHello and extensions, the client can already derive one of the two main secret
inputs for key derivation, namely the static secret SS, as the Diffie–Hellman shared value gxs.19 The initial
0-RTT keys are then derived using HKDF in the extract-then-expand paradigm [Kra10]: first, an extracted
value xSS is computed from which, in a second step, the 0-RTT handshake and 0-RTT application data
traffic keys tkehs and tkead are expanded. Here, we use the same notation for the two HKDF functions as
introduced in Section 4.

18TLS 1.3 does generally not provide protection against replay of 0-RTT data between multiple connections, but allows
inclusion of an optional context value within the CEAD message to implement unique per-connection configuration identifiers
delivered out-of-band as an anti-replay measurement outside of TLS (cf. [Res16b, Section 6.3.2.5.2]). We do not consider this
special mechanism in our analysis.

19Note that the TLS 1.3 key schedule changed significantly from draft-12 to draft-13 and hence in particular differs from
that in our analysis of the draft-14 PSK-based 0-RTT handshakes in Sections 4 and 5.

33

Client Server

ClientHello: rc $←− {0, 1}256

+ ClientKeyShare: X ← gx

+ ClientEarlyData: config_id

H1 ← H(CH||SC†||SCRT†) (incl. CKS, CEAD)
SS← Sx SS← XsxSS← HKDF.Extract(0, SS)

tkehs ← HKDF.Expand(xSS, label1||H1) stage 1

(ClientCertificate∗0): pkC
(ClientCertificateVerify∗0):

H2 ← H(CH||SC†||SCRT†||CR†||CCRT∗0)
CCV0 ← Sign(skC , H2)
(ClientFinished0):

H3 ← H(CH||SC†||SCRT†||CR†||CCRT∗0||CCV∗0)
FS0-RTT ← HKDF.Expand(xSS, label2)

CF0 ← HMAC(FS0-RTT, H3)
check Verify(pkC , H2, CCV0) = 1

check CF0 = HMAC(FS0-RTT, H3)
tkead ← HKDF.Expand(xSS, label3||H1) stage 2

record layer (application data), using AEAD with key tkead

ServerHello: rs $←− {0, 1}256

+ ServerEarlyData
+ ServerKeyShare: Y ← gy

H4 ← H(CH||SH)
ES← Y x ES← XyxES← HKDF.Extract(0,ES)

tkhs ← HKDF.Expand(xES, label4||H4) stage 3

{EncryptedExtensions}
{CertificateRequest∗}
{ServerConfiguration∗}

{ServerCertificate∗}: pkS
H5 ← H(CH||SH|| . . . ||SCRT∗)

{ServerCertificateVerify∗}:
SCV← Sign(skS , H5)

H6 ← H(CH||SH|| . . . ||SCV∗)
mES← HKDF.Expand(xES, label5||H6)
mSS← HKDF.Expand(xSS, label6||H6)

MS← HKDF.Extract(mSS,mES)
FSS ← HKDF.Expand(MS, label7)

{ServerFinished}:
SF← HMAC(FSS, H6)

check Verify(pkS , H5, SCV) = 1
check SF = HMAC(FSS, H6)
{ClientCertificate∗}: pkC

H7 ← H(CH||SH|| . . . ||CCRT∗)
{ClientCertificateVerify∗}:
CCV← Sign(skC , H7)

H8 ← H(CH||SH|| . . . ||CCV∗)
FSC ← HKDF.Expand(MS, label8)

{ClientFinished}:
CF← HMAC(FSC, H8)

check Verify(pkC , H7, CCV) = 1
check CF = HMAC(FSC, H8)

Hsess ← H(CH||SH|| . . . ||CF)
tkapp ← HKDF.Expand(MS, label9||H6) stage 4

RMS← HKDF.Expand(MS, label10||Hsess) stage 5
EMS← HKDF.Expand(MS, label11||Hsess) stage 6

record layer (application data), using AEAD with key tkapp

ES

SS

Ext

xSS

0

Exp

FS0-RTT

Ext

xES

0

Exp

mSS

H6Exp

mES

H6

Ext

MS

Exp FSC

Exp FSS

Exptkehs

(stage 1)

H1

Exptkead

(stage 2)

H1

Exptkhs

(stage 3)

H4

Exptkapp

(stage 4)

H6

ExpEMS
(stage 5)

Hsess

ExpRMS
(stage 6)

Hsess

(resum
ption)

Protocol flow legend
MSG: Y TLS 1.3 message MSG containing Y
(MSG) message MSG AEAD-encrypted with tkehs

{MSG} message MSG AEAD-encrypted with tkhs

[MSG] message MSG AEAD-encrypted with tkapp

+ MSG message sent as extension within previous message
MSG∗ message is situation-dependent and not always sent
MSG† message from previous handshake that established SC
MSGM message is sent when enabling later resumption
Key schedule legend
Ext / Exp HKDF.Extract resp. HKDF.Expand function
X salt input X to Ext resp. context info input X to Exp

(label inputs to Exp are omitted)

Figure 3: The TLS 1.3 draft-12 (EC)DHE with 0-RTT handshake protocol (left) and key schedule (right).

34

The following three messages of the 0-RTT phase are then sent encrypted using tkehs, which is unilat-
erally (server-side) authenticated. They are conceptually similar to the client’s authentication messages
sent later (as in the full handshake), but marked with a subscript 0 for distinction.

• ClientCertificate0 (CCRT0) contains the client’s public-key certificate and is optionally sent if the
client wishes to authenticate its 0-RTT data.

• ClientCertificateVerify0 (CCV0) is sent only if ClientCertificate0 is sent and contains a digital
signature over the handshake hash (the hash of all sent and received handshake messages at this point,
i.e., here only the client’s messages CH (incl. extensions) and CCRT0), as well as the server configuration
used by the client, and further messages from the previous handshake in which the client received
this server configuration.

• ClientFinished0 (CF0) contains an HMAC value, a message authentication code computed over (a
hash of) the same messages as for CCV0 and the CCV0 message itself; keyed with the 0-RTT finished
secret FS0-RTT derived from xSS.

At this point, the client can send early (0-RTT) application data, encrypted under tkead (which is server-
and optionally also client-authenticated).

After receiving the client’s first flight, the server can derive the same 0-RTT keys using its stored
configuration for the semi-static key gs and process the client’s 0-RTT handshake and application data.
The server can also decide to reject 0-RTT keys and data (setting sid1, sid2, K1, and K2 to ⊥ in our model);
it must in particular do so if the server configuration identifier config_id sent by the client is invalid,
unknown, or expired. In either case, the server continues the handshake by sending out its ServerHello
message and extensions.

Both parties can then compute the second secret input, the ephemeral secret ES, as the shared Diffie–
Hellman value gxy, and an extracted value xES from which the (unauthenticated) handshake traffic key tkhs
is expanded. The key tkhs is then used to encrypt the remaining handshake:

• EncryptedExtensions (EE) allows to specify further extensions.

• CertificateRequest (CR) is sent by the server if it demands client authentication.

• ServerConfiguration (SC) is optionally sent to provide the client with a new server configuration
(cryptographically a semi-static Diffie–Hellman share gs′) which the client can later use for another
(EC)DHE 0-RTT handshake.

• ServerCertificate (SCRT)/ClientCertificate (CCRT) contain the client’s resp. server’s public-key
certificate; each is sent if the according party is supposed to authenticate.

• ServerCertificateVerify (SCV)/ClientCertificateVerify (CCV) are digital signatures over the
current handshake hash at the point when they are sent.

After the ServerCertificateVerify message is sent resp. received, both parties derive the master se-
cret MS, extracted from the intermediate expanded versions mES and mSS of the (extracted) ephemeral
and static secrets xES and xSS).

• ClientFinished (CF)/ServerFinished (SF) contain an HMAC value over the handshake hash using
the client resp. server finished secret FSC/FSS as the key; both finished secrets are derived from the
master secret MS.

35

At this point, three final keys are derived from the master secret through HKDF expansion steps: the
application traffic key tkapp for protecting the (non–0-RTT) application data sent20, the resumption master
secret RMS for later preshared-key–based session resumption, and the exporter master secret EMS from
which further key material for usage outside of TLS can be derived.

As for the PSK-based 0-RTT handshakes (cf. Section 6), our analysis of the draft-12 (EC)DHE 0-RTT
handshake focuses on its core components and we hence do not treat 0.5-RTT data and post-handshake
messages.

7 Security of the TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake
We conduct our security analysis of the TLS 1.3 draft-12 (EC)DHE 0-RTT handshake (draft-12-(EC)DHE-0RTT)
in the public-key variant (MSKE) of the multi-stage key exchange model. First, we need to state the (for-
malized) protocol-specific properties (such as the available authentication modes, its replayability proper-
ties, etc.) as well as how session matching is defined via the session and contributive identifiers for each
stage. The properties are captured as follows:

• M = 6: the 0-RTT handshake has six stages (deriving, in that order, keys tkehs, tkead, tkhs, tkapp,
RMS, and EMS).

• AUTH =
{
(unilateral, authead, unauth, authfin, authfin, authfin) | authead ∈ {unilateral,mutual}, authfin ∈

{unauth, unilateral,mutual}
}
: the first-stage key is always unilaterally authenticated, the second-stage

(early-data) key can bei unilaterally or mutually authenticated, the traffic handshake key is always
unauthenticated, and the final three keys (tkapp, RMS, and EMS) share the same authentication
property which can be no authentication, unilateral authentication, or mutual authentication.

• USE = (internal, external, internal, external, external, external): the early-data and regular handshake
traffic keys tkehs and tkhs are used within the handshake, whereas the early-data and main application
traffic keys tkead and tkapp as well as the resumption and exporter master secret RMS and EMS are
used only externally.

• REPLAY = (replayable, replayable, nonreplayable, nonreplayable, nonreplayable, nonreplayable): the early-
data stages 1 and 2 are replayable, the other stages are not.

As we will see, the TLS 1.3 draft-12 0-RTT handshake furthermore enjoys key independence and forward
secrecy (wrt. compromise of long-term secrets) for all keys. For the forward secrecy of the early-data (0-
RTT) keys tkehs and tkead, recall that our model treats compromises of long-term and semi-static secrets
independently through the Corrupt resp. RevealSemiStaticKey query. While those keys remain (forward)
secret after a long-term key compromise, they are replayable and hence become insecure when the involved
semi-static key is revealed.21

For session matching, we define the session identifiers for the first four stages to be the unencrypted
messages sent and received that enter the handshake hash for the respective key’s derivation, including (for

20More precisely, TLS 1.3 derives an intermediate traffic secret from which the actual application traffic key tkapp is
expanded. This is done in order to allow for later key updates, where first an updated traffic secret is computed from which
then the new traffic key is derived. We do not capture this key update mechanism and hence omit the intermediate traffic
secret derivation for simplicity.

21For this reason, our result in particular does not contradict the statement in draft-12 that “[t]his [0-RTT] data is not
forward secret, because it is encrypted solely with the server’s semi-static (EC)DH share” [Res16b, Section 6.2.2]. The draft
merely requires a forward-secret key to be resilient against compromises of both long-term and semi-static keys.

36

the early-data stages) the ServerConfiguration and accompanying messages the client received earlier:

sid1 = (ClientHello, ServerConfiguration†, ServerCertificate†, CertificateRequest†),
sid2 = (ClientHello, ServerConfiguration†, ServerCertificate†, CertificateRequest†,

ClientCertificate∗0, ClientCertificateVerify∗0, ClientFinished0),
sid3 = (ClientHello, ServerHello), and
sid4 = (ClientHello, ServerHello, EncryptedExtensions, CertificateRequest∗,

ServerConfiguration∗, ServerCertificate∗, ServerCertificateVerify∗, ServerFinished,

ClientCertificate∗, ClientCertificateVerify∗, ClientFinished).

Here, Hello messages always contain the according KeyShare and EarlyData extensions, components
marked with † are those enabling the 0-RTT exchange received by the client in an earlier handshake,
and starred (∗) components are not present in all authentication modes. For the two final stages, we
define the session identifiers to contain a distinguishing label beyond the full stage-4 identifier, namely
sid5 = (sid4, “RMS”) and sid6 = (sid4, “EMS”).

As for the PSK-based handshakes (cf. Section 5), we define the contributive identifiers such that a
server session can be tested when receiving an honest client contribution. That is, for stage 3 (deriving the
handshake traffic key), we let the client (resp. server) on sending (resp. receiving) the ClientHello message
(including the ClientKeyShare and ClientEarlyData extension) initially set cid3 = (ClientHello) and
subsequently, on receiving (resp. sending) the ServerHello message (incl. SKS, SEAD), extend it to cid3 =
(ClientHello, ServerHello). The other contributive identifiers are set to cidi = sidi, for stages i ∈ {1, 2}
when sending resp. receiving the 0-RTT ClientFinished message and for stages i ∈ {4, 5, 6} by each party
on sending its respective Finished message.

Finally, we capture as semi-static public resp. private keys the values gs and s incorporated in the
derivation of the static secret SS and 0-RTT key derivation; issued by servers and learned by clients via
some ServerConfiguration (SC) message in an earlier (EC)DHE full or 0-RTT handshake. This message is
sent together with a ServerCertificate (SCRT) and, optionally, CertificateRequest (CR) message (the
latter enabling 0-RTT client authentication) and is signed within the ServerCertificateVerify message.
In our model, we let the adversary control the generation of semi-static keys through the NewSemiStaticKey
query, deciding whether a CR message is sent or not by setting the optional input sskauxpre = CR. The
NewSemiStaticKey query then samples an exponent value s at random to generate a new semi-static key, and
outputs the auxiliary information sskaux = (SC, SCRT) resp. sskaux = (SC, SCRT, CR) along with sspk = gs

and a key identifier sskid. When instantiating a new session (through NewSession), the adversary controls
which semi-static key a client session uses for the 0-RTT exchange via the sskidV identifier and determines
whether a server issues a new semi-static key in a ServerConfiguration message (and which key this
is) via the server sessions’ sskidU identifier.22 Finally, the RevealSemiStaticKey query allows the adversary
to learn the secret exponent s for semi-static keys of its choice, at the price of not being allowed to test
stage-1 and stage-2 (i.e., early-data) keys for which this semi-static key was used.

We are now able to provide our security results for the TLS 1.3 draft-12 (EC)DHE 0-RTT handshake.

Theorem 7.1 (Match security of draft-12-(EC)DHE-0RTT). The draft-12 (EC)DHE 0-RTT handshake
is Match-secure: for any efficient adversary A we have

AdvMatch
draft-12-(EC)DHE-0RTT,A ≤ n

2
s · 1/q · 2−|nonce|,

where ns is the maximum number of sessions, q is the group order for the Diffie–Hellman problem, and
|nonce| = 256 is the bit-length of the nonces.

22Note that in TLS 1.3 only servers hold semi-static keys. In particular, NewSession queries in our model will hence have
the client’s semi-static key identifier (sskid) parameter set to ⊥.

37

Proof. We need to show that the six conditions for Match security hold:

1. Sessions with the same session identifier for some stage hold the same key at that stage.
The session identifiers for stages 1–2 and stages 3–6 contain the client’s resp. the client’s and the
server’s Hello messages and hence fix the Diffie–Hellman shares gx and gs (through the unique
semi-static key/con-figuration identifier sskid = config_id) resp. also gy. Therefore, coinciding ses-
sion identifiers imply agreement on the static secret SS (in stages 1–2) and, for stage 3–4, also the
ephemeral secret ES (i.e., the input keying material). As each session identifier in particular further-
more contains all messages exchanged that enter the handshake hash within the key derivations, the
session keys are uniquely determined by the session identifier in each stage.

2. Sessions with the same session identifier for some stage agree on that stage’s authentication level.
For stages 1 and 3, the authentication level is fixed to unilateral resp. unauth. For the other stages,
unilateral authentication is indicated (exactly) by the exchange of SCRT and SCV messages, whereas
mutual authentication requires messages CCRT and CCV (as well as, for stages 4–6, also the server’s
messages). Hence, agreement on the session identifier (including theses messages) implies agreement
on that stage’s authentication.

3. Sessions with the same session identifier for some stage share the same contributive identifier.
For stages i ∈ {1, 2, 4, 5, 6} this follows immediately from sidi = cidi. For stage 3, note that when
both sides set the session identifier, the contributive identifier is also set to its final value cid3 = sid3.

4. Sessions are partnered with the intended (authenticated) participant.
As sessions of honest parties will not attest a different identity than their own in the SCRT and CCRT
messages nor accept such a message for an identity different from the intended partner, agreement on
these messages (which are included in the respective session identifiers for unilaterally and mutually
authenticated stages) in particular implies agreement on each partner’s identity.

5. Session identifiers do not match across different stages.
This holds trivially since session identifiers sid1–sid4 contain distinct (non-optional) messages and
sid5 and sid6 include a separating identifier.

6. At most two sessions have the same session identifier at any non-replayable stage.
As stages 1 and 2 are replayable, we need to consider this condition only for the stages 3–6.23 Observe
that the session identifiers for those stages contain the client’s and server’s Hello message and, hence,
for each side a randomly chosen nonce nc (ns) as well as a randomly chosen group element gx (gy).
Therefore, in order for a third (client resp. server) session to agree on the same session identifier it
needs to, at least, pick the same nonce and group element as the client resp. server, which can be
upper bounded by the probability of any two parties colliding on the same nonce and group element.
This probability can, again, be bounded from above by n2

s · 1/q · 2−|nonce|, where ns is the number of
all (client or server) sessions, q is the group order, and |nonce| = 256 the bit-length of the nonces.

Theorem 7.2 (Multi-Stage security of draft-12-(EC)DHE-0RTT). The draft-12 (EC)DHE 0-RTT hand-
shake is Multi-Stage-secure in a key-independent and stage-1-forward-secret manner with properties (M,
AUTH,USE,REPLAY). Formally, for any efficient adversary A against the Multi-Stage security there exist

23Note that, indeed, a server has no means to check whether the client’s first-flight messages (being the only content of the
first two stages’ session identifiers) have been transmitted to another server before. This allows an adversary to replay those
messages and, hence, make one client session be partnered with multiple server sessions, all deriving the same session key. As
we will see in a moment, this still does not allow the adversary to break those keys’ secrecy.

38

efficient algorithms B1, . . . , B14 such that

AdvMulti-Stage,D
draft-12-(EC)DHE-0RTT,A ≤ 6ns·

(
AdvCOLL

H,B1 + nu · AdvEUF-CMA
Sig,B2

+ AdvCOLL
H,B3 + ns · nss ·

(
AdvmsPRF-ODH

HKDF.Extract,G,B4 + AdvPRF-sec
HKDF.Expand,B5

)
+ AdvCOLL

H,B6 + nu · AdvEUF-CMA
Sig,B7 + AdvCOLL

H,B8 + nu · AdvEUF-CMA
Sig,B9

+ AdvCOLL
H,B10 + ns ·

(
AdvPRF-ODH

HKDF.Extract,G,B11 + AdvPRF-sec
HKDF.Expand,B12

+ Advst-Extract
HKDF.Extract,B13 + AdvPRF-sec

HKDF.Expand,B14

))
,

where nu is the maximum number of users, ns is the maximum number of sessions, and nss is the maximum
number of semi-static keys.

Proof. First of all we consider that the adversary A makes a single Test query only. This reduces its
advantage, based on a hybrid argument detailed for the full handshake proof [DFGS15b, Appendix A],
by a factor at most 1/6ns for the six stages in each of the ns sessions. We can now speak about the
session label tested at stage i, and that we know the index of the session and the stage in advance.

In our analysis, we then separately treat the (disjoint) cases that the adversary tests an early-data
(stage-1 or stage-2) key or a regular key (stages 3–6). For tests on stages 1 and 2, we further distinguish
between the following two (again disjoint) sub-cases that

A. the adversary tests a server session without honest (contributive) partner in the first stage (i.e.,
label.role = responder for the test session label and there exists no label′ 6= label with label.cid1 =
label′.cid1) and

B. the adversary tests a server session with honest (contributive) partner in the first stage or a client
session (i.e., label.role = initiator or label.role = responder and there exists a label′ 6= label with
label.cid1 = label′.cid1).

For tests on stages 3–6, we split our analysis along the same (sub)cases C,D, and E used in the analysis of
the full handshake mode [DFGS15a, DFGS15b, DFGS16] (for which, as we detail in the proof, the analysis
closely follows the one for the draft-10 full handshake so that we moreover obtain the same security
bounds):

C. the adversary tests a client session without honest contributive partner in the third stage (i.e.,
label.role = initiator for the test session label and there exists no label′ 6= label with label.cid3 =
label′.cid3),

D. the adversary tests a server session without honest contributive partner in the third stage (i.e.,
label.role = responder and there exists no label′ 6= label with label.cid3 = label′.cid3), and

E. the tested session has an honest contributive partner in stage 3 (i.e., there exists label′ with label.cid3 =
label′.cid3).

39

This allows us to split the adversary’s advantage along these five cases:

AdvMulti-Stage,D
draft-12-(EC)DHE-0RTT,A ≤ 6ns·

(
Adv1-Multi-Stage, test 1–2, server without partner

draft-12-(EC)DHE-0RTT,A

+ Adv1-Multi-Stage, test 1–2, server with partner/client
draft-12-(EC)DHE-0RTT,A

+ Adv1-Multi-Stage, test 3–6, client without partner
draft-12-(EC)DHE-0RTT,A

+ Adv1-Multi-Stage, test 3–6, server without partner
draft-12-(EC)DHE-0RTT,A

+ Adv1-Multi-Stage, test 3–6, test with partner
draft-12-(EC)DHE-0RTT,A

)
.

For the proof of each case, we will proceed in a sequence of games: We start from the original Multi-Stage
game with a single Test query (denoted 1-Multi-Stage), restricted to the case in question, and modify this
game in each step, showing that the difference in the adversary’s advantage between the two games can
be bounded by complexity-theoretic assumptions. Finally, in the last game the advantage of A will be at
most 0 and the advantage for the considered case hence bound by combination of the intermediate bounds.

Case A. Stage 1–2: Test Server without Stage-1 Partner

For the case that the adversary tests a server (responder) session in stage 1 or 2 without contributive
partner in the first stage, we recall that cidi = sidi for i ∈ {1, 2} and hence, as all messages in sid1 are also
contained in sid2, the tested session also cannot have a partner in the second stage. In order to not lose
immediately, the adversary can test responder session stages without contributive partner only if they are
mutually authenticated. Since the stage-1 keys are unilaterally authenticated we can focus on the second
stage to be tested and assume label.auth2 = mutual.

Game A.0. We begin with the initial game GA.0 which equals the Multi-Stage game with one Test query
which must be issued on a stage-1 or stage-2 key of a server session without honest contributive identifier.
Therefore,

AdvGA.0
draft-12-(EC)DHE-0RTT,A = Adv1-Multi-Stage,test 1–2, server without partner

draft-12-(EC)DHE-0RTT,A .

Game A.1. Next, we exclude hash collisions in the execution by letting the challenger abort in case
two honest sessions compute the same hash value for two distinct inputs in any evaluation of the hash
function H. We can bound the probability of the game being aborted for that reason (i.e., the only way
for A to distinguish the change) by advantage probability of an adversary B1 in breaking the collision
resistance of H. For this, B1 can simply take the role of the challenger and, in case of the abort, output
the colliding hash inputs. This way B1 wins if the game is aborted and hence

AdvGA.0
draft-12-(EC)DHE-0RTT,A ≤ AdvGA.1

draft-12-(EC)DHE-0RTT,A + AdvCOLL
H,B1 .

Game A.2. As the final change, we let the challenger abort the game if the tested server session receives
a ClientCertificateVerify0 message which contains a valid signature (under some public key pkU) that
no honest session ever computed.

We can bound the probability of such an event by the advantage of an adversary B2 against the
unforgeability (in the sense of EUF-CMA) of the signature scheme Sig. In the reduction, B2 first needs to
guess the identity U ∈ U under whose public key the obtained signature will verify, replacing that user’s
public key with the challenge public key in the EUF-CMA game and generating signatures using the signing

40

oracle. All other keys are generated by B2 during the game setup. When the tested session receives a valid
CCV0 message causing an abort, B2 outputs the contained signature as forgery.

As the tested session has no honest partner, no honest client signed the contained handshake hash
before. Otherwise, this client would agree on all messages up to CCV0 and also on CF0 (as these former
messages uniquely determine the latter), and hence also on the session identifier. Moreover, no party with
a different session identifier signed the same handshake hash, as this would constitute a hash collision
which we excluded in Game A.1. Given that B2 correctly guessed the used public key pkU (among the
keys of the at most nu users), its output constitutes a valid forgery and hence

AdvGA.1
draft-12-(EC)DHE-0RTT,A ≤ AdvGA.2

draft-12-(EC)DHE-0RTT,A + nu · AdvEUF-CMA
Sig,B2 .

At this point, we ensured that the tested session obtains a ClientCertificateVerify0 message issued
by an honest client. This client hence agrees on all messages up to CCV0, which also determine CF0,
and hence will hold the same session identifier sid2. Therefore, the tested session cannot be without
(contributive) partner and hence A cannot issue a Test query anymore at this point, leaving the test bit
unknown to A and thus

AdvGA.2
draft-12-(EC)DHE-0RTT,A ≤ 0.

Case B. Stage 1–2: Test Server with Stage-1 Partner or Client

In the second case for tests on early-data keys, we know that a tested server session always has a partnered
session and that, for client sessions, the server is always authenticated (through the server configuration
of some previous communication). A Test query can in this case be issued in any of the two stages.

Game B.0. We start with the unmodified initial game GB.0:

AdvGB.0
draft-12-(EC)DHE-0RTT,A = Adv1-Multi-Stage, test 1–2, server with partner/client

draft-12-(EC)DHE-0RTT,A .

Game B.1. Our first modification then again excludes hash collisions by letting the challenger abort
whenever two honest sessions on different inputs compute the same hash value under H. Like in Game A.1,
the probability of this happening can be bounded by the advantage of an adversary B3 against H’s collision
resistance:24

AdvGB.0
draft-12-(EC)DHE-0RTT,A ≤ AdvGB.1

draft-12-(EC)DHE-0RTT,A + AdvCOLL
H,B3 .

Game B.2. Second, we guess the (index of the) client session involved in the test (i.e., the client session
itself if the client-side is tested, or the client session partnered with the server session if the server side is
tested) and abort if this guess is incorrect. Note that in both cases, this client session is an honest session
simulated by the challenger. This can reduce the adversary’s advantage by a factor of at most the number
of sessions ns:

AdvGB.1
draft-12-(EC)DHE-0RTT,A ≤ ns · AdvGB.2

draft-12-(EC)DHE-0RTT,A.

Game B.3. Next, we additionally guess the (index of the) configuration identifier config_id (i.e., in
terms of our model, the semi-static key identifier sskid resp. the NewSemiStaticKey query through which

24In principle we could merge this game hop with the one in the first case to establish collision freeness of nonces once and
for all, yielding a slightly better bound, but we prefer to present all cases in a closed form instead.

41

it is issued) the involved client session will use within its ClientHello message. Again, this reduces the
advantage of A by a factor of at most the number of semi-static keys nss:

AdvGB.2
draft-12-(EC)DHE-0RTT,A ≤ nss · AdvGB.3

draft-12-(EC)DHE-0RTT,A.

Game B.4. At this point, we know in advance which semi-static key the involved client session will
employ, enabling us to encode a Diffie–Hellman challenge in the static secret SS derived from the client’s
ephemeral share gx and the server’s semi-static share gs (selected through the server configuration identi-
fier).

As the server’s semi-static key gs is potentially used in more than one session, we need to be able to
compute (keys from) further static secrets SS′ from the same gs but a different gx′ , even when knowing
neither s nor x′. Moreover, when the client session continues, it might obtain, within the ServerKeyShare
message, an ephemeral Diffie–Hellman share gy′ different from the value gy chosen by the honest server
session partnered in the early-data stages.25 We hence, once, need to compute (keys from) the ephemeral
secret ES (resp. xES) in the client session, even without knowing x or y′. To this extent, we model the
HKDF.Extract function as a pseudorandom function keyed with elements from group G and employ the
msPRF-ODH assumption (cf. Definition 2.2). The latter allows us to replace a HKDF/PRF value under SS
with a random value while providing oracle access to evaluate the PRF under further keys SS′ = gx

′s (for
gx
′ 6= gx) as well as, once, under a key ES′ = gxy

′ (for an arbitrary gy′ 6= gs, without knowing x).
More in detail, in Game B.4 we replace the extracted static secret xSS by a uniformly random

string x̃SS $←− {0, 1}λ in both the tested and its potentially partnered session(s), as well as in any ses-
sion that sends or receives within the ClientHello message the same ephemeral key gx and (identifier
for the) semi-static key gs (and ignore the SS value in those sessions). We can bound the difference in
advantage of adversary A through this modification by the advantage of an algorithm B4 in winning the
msPRF-ODH game as follows.

Initially, B4 receives a group element gv in the msPRF-ODH game and immediately issues the challenge
query x̂ = 0 for which it obtains a response (gû, ŷ) where ŷ is either the value PRF(gûv, 0) or a uniformly
random string. It then acts as the challenger in the Multi-Stage game forA, choosing a test bit btest

$←− {0, 1}
at random and simulating it according to the description except for the following changes.

• When A issues the NewSemiStaticKey query guessed in Game B.3, algorithm B4 uses gv for the
returned semi-static public key sspk (implicitly setting gs = gv for the tested session).

• For the tested session and its potential partnered session(s), B4 uses gû as the ephemeral Diffie–
Hellman share of the guessed tested client session resp. partnered client session of the tested server
session, implicitly setting gx = gû for the tested session. Furthermore, we use xSS = ŷ as the
extracted semi-static secret in both the tested and potential partnered session(s) as well as in server
sessions obtaining the same ephemeral gx and previous ServerConfiguration for gs.

• For any server session using the guessed semi-static key that obtains a client ephemeral Diffie–
Hellman share gx′ 6= gx, algorithm B4 does not compute SS explicitly but uses xSS← PRF((gx′)v, 0)
directly as the response of a msPRF-ODH query (gx′ , 0).

• For the client session tested or partnered with the tested server session in stage 1, algorithm B4 does
not explicitly compute the ephemeral secret ES. Instead, it directly uses the response of a distinct
msPRF-ODH query (gy′ , 0) as xES← PRF((gy′)x, 0), where gy′ is the server’s key share obtained by
the client within the ServerKeyShare message.

25Observe that, while the server might sign its share, this signature is only checked after the (always unauthenticated)
handshake traffic key is computed and, hence, might contain an adversarially controlled server share gy′

.

42

In the special case that gy′ = gs (resulting in SS = ES for the client session), algorithm B4 however
does not issue a query, but simply (re-)uses the challenge xES = ŷ.

Finally, B4 outputs 1 if A wins in the Multi-Stage game and otherwise 0.
In case ŷ = PRF(gûv, 0) this approach equals Game B.3 while if ŷ is a uniformly random value, it equals

Game B.4. For this, let us see why B4 provides correct simulations for A in both cases.
First of all, recall that implicitly gs = gv and gx = gû in the tested and partnered sessions, hence

xSS← PRF(gûv, 0) = PRF(gxs, 0) is chosen as in the real Game B.3 in case b = 0 in the msPRF-ODH game
(recall that HKDF.Extract is our PRF function). In case b = 1, the value xSS $←− {0, 1}λ is a randomly
chosen element as specified for Game B.4.

Moreover, B4 is free to replace these two values at will, as A is only able to passively observe them and
does not get to learn the discrete logarithms: For one, gs needs to be unrevealed (i.e., stssk,sskid = fresh) in
order for Test queries on 0-RTT keys derived from it to be allowed. This holds as a RevealSemiStaticKey
query on a tested replayable stage would set the lost flag to true. At the same time, Corrupt queries do
not reveal semi-static keys. Then, if the client side is tested, this side necessarily is honest and hence
picks gx, while, if the server side is tested, it must have an honest partnered client session, which means
A cannot have modified the honestly picked ephemeral gx on the way. Finally, both gx and gs are chosen
independently of the other ephemeral and semi-static values (which B4, hence, can still select on its own),
which in particular implies that B4 can detect a differing behavior of A in case, coincidentally, the same
Diffie–Hellman shares are picked independently in another session.

Using the queries provided in the msPRF-ODH security game, B4 is moreover able to correctly compute
keys from both further static secrets SS′ for server sessions using the same semi-static key gs (without
knowing s), as well as (once) the ephemeral secret ES′ in the involved client session (without knowing x).
Hence, it can in particular correctly answer Reveal queries to any of these sessions.

Therefore, the advantage (or winning probability) difference of A between Game B.3 and Game B.4
is, through B4’s output, transformed into a difference of outputting 1 in the two cases of the msPRF-ODH
game and, hence, we can bound the former difference as

AdvGB.3
draft-12-(EC)DHE-0RTT,A ≤ AdvGB.4

draft-12-(EC)DHE-0RTT,A + AdvmsPRF-ODH
HKDF.Extract,G,B4 .

Game B.5. In the last step, we replace the HKDF.Expand evaluations keyed with x̃SS, in particular in
the tested and matching sessions, by a (lazy-sampled) random function. This in particular results in the
early-data handshake and application traffic keys tkehs and tkead, the 0-RTT finished secret FS0-RTT, and
the expanded static secret mSS in the tested session being replaced by random values t̃kehs, t̃kead, ˜FS0-RTT,
m̃SS $←− {0, 1}λ.

We can turn any adversary A distinguishing this change (with non-negligible probability) into an
adversary B5 against the PRF security of HKDF.Expand. Again, B5 acts as the Multi-Stage challenger
for A, this time using its PRF oracle for any HKDF.Expand evaluation under key x̃SS, while performing
evaluations under different keys on its own. In case the PRF oracle computes the real function, this
simulation equals Game B.4; if the oracle computes a random function, it equals Game B.5. Moreover, the
simulation is sound as x̃SS is an independent random value (due to the change in Game B.4) and hence
chosen like the key in the PRF security game.

Thus, B5’s distinguishing advantage in the PRF game bounds the difference of A in the two games:

AdvGB.4
draft-12-(EC)DHE-0RTT,A ≤ AdvGB.5

draft-12-(EC)DHE-0RTT,A + AdvPRF-sec
HKDF.Expand,B5 .

With the change in Game B.5, both potentially tested keys t̃kehs and t̃kead are now chosen independently
at random. Hence, a Test query on them does not reveal any information about the test bit btest to the

43

adversary. Moreover, even if A replays the first messages of the involved client session to further server
sessions or injects the client’s ephemeral share gx in a differently crafted ClientHello message, this does
not allow it to distinguish the real from the random key. In the former case, all sessions receiving the same
client 0-RTT messages will be partnered with the test session (and hence those keys cannot be revealed).
In the latter case, the keys tkehs and tkead in those (non-partnered) sessions will be derived from the same
key x̃SS but with a distinct handshake hash (due to Game B.1) and, hence, are independent random values
themselves. Therefore, btest remains unknown to A and thus

AdvGB.5
draft-12-(EC)DHE-0RTT,A ≤ 0.

Case C. Stage 3–6: Test Client without Stage-3 Partner

This case can be proven as for the draft-10 full (EC)DHE handshake [DFGS16], keeping in mind that (as
for the 0-RTTmessages), the ServerCertificateVerify message uniquely determines the ServerFinished
message and hence still attest agreement on the session identifiers for draft-12, now containing the fin-
ished messages. Hence, the security bound established by Dowling et al. [DFGS16] (for corresponding
adversaries B6 and B7) still applies:

Adv1-Multi-Stage, test 3–6, client without partner
draft-12-(EC)DHE-0RTT,A ≤ AdvCOLL

H,B6 + nu · AdvEUF-CMA
Sig,B7 .

Case D. Stage 3–6: Test Server without Stage-3 Partner

As for the previous case, the bound established in [DFGS16] (for corresponding adversaries B8 and B9)
applies:

Adv1-Multi-Stage, test 3–6, server without partner
draft-12-(EC)DHE-0RTT,A ≤ AdvCOLL

H,B8 + nu · AdvEUF-CMA
Sig,B9 .

Case E. Stage 3–6: Test with Stage-3 Partner

For the last case, the following aspects need to be considered when adapting the full handshake proof [DFGS16]
to the (full handshake part of the) 0-RTT handshake.

First, the ephemeral and static secrets ES = gxy and SS = gxs are now derived differently (instead of
having ES = SS as in the full handshake). The PRF-ODH challenge encoded in gx and gy hence only allows
us to replace xES by a uniformly random element x̃ES $←− {0, 1}λ, while the derivation SS remains unmod-
ified (in particular, A is allowed to reveal the semi-static key gs at any time via a RevealSemiStaticKey).

Second, when replacing with random the master secret derived as MS ← HKDF.Extract(mSS, m̃ES),
mSS is derived from SS = gxs and hence may be known to the adversary through a RevealSemiStaticKey
query on gs. We thus cannot rely on the PRF security of Extract as in the full handshake proof. Instead,
following the analysis of the core cryptographic protocol OPTLS by Krawczyk and Wee [KW16], we
model HKDF.Extract as a strong extractor with m̃ES as entropy source and mSS as (public) seed. The
step of replacing MS with an independent random value M̃S $←− {0, 1}λ can accordingly be bounded by the
corresponding distinguishing advantage Advst-Extract

HKDF.Extract,.
Considering these changes, the advantage bounds induced by the proof steps beyond that for the strong

extractor remain identical to those established in [DFGS16]:

Adv1-Multi-Stage, test 3–6, test with partner
draft-12-(EC)DHE-0RTT,A ≤ AdvCOLL

H,B10 + ns ·
(
AdvPRF-ODH

HKDF.Extract,G,B11 + AdvPRF-sec
HKDF.Expand,B12

+ Advst-Extract
HKDF.Extract,B13 + AdvPRF-sec

HKDF.Expand,B14

)
.

44

8 Comparing the QUIC and TLS 1.3 0-RTT Handshakes
We emphasize two aspects here in which the TLS 1.3 design is superior to QUIC and strengthens the
achievable (multi-stage) security both in terms of key independence and compositionality: For one thing,
it derives separate keys for the different purposes (in particular, tkehs and tkead as well as tkhs and tkapp for
the encryption of (0-RTT resp. regular) handshake messages and data), enabling a cleaner key separation.
For another thing, it establishes authenticity of the server’s Diffie–Hellman share gy through an explicit
MAC (PSK-(EC)DHE 0-RTT) resp. signature ((EC)DHE 0-RTT) instead of through an authenticated
encryption (under the 0-RTT key) in the data channel, rendering the security of one session key not
relying on the secrecy of another.

Conversely, QUIC in its original version Rev 20130620 achieves replay protection for the derived 0-RTT
key on the key exchange level whereas TLS 1.3 does not (and hence, technically, TLS 1.3 satisfies only
a weaker notion of security in that respect). As discussed in the beginning, this protection however may
become void in the overall setting of secure channels when clients actively replay rejected 0-RTT data over
the main channel.

Finally, the (abandoned) Diffie–Hellman-based and the (remaining) PSK-based 0-RTT handshakes in
TLS 1.3 (as specified for draft-12 resp. draft-14) differ in the forward-secrecy guarantees they provide
for 0-RTT keys, as already pointed out by Krawczyk on the TLS mailing list [Kra16]. While in draft-12
(EC)DHE 0-RTT those keys are forward secret (wrt. long-term (signing) key compromise) and succumb
only to exposures of the semi-static key involved, no forward secrecy is provided in the PSK and PSK-
(EC)DHE 0-RTT mode of draft-14. It is important to note, though, that preshared resumption secrets
used in the PSK-based 0-RTT modes (treated as long-term secrets in our model) are usually much shorter-
lived than public-key long-term signing keys, mitigating the effects of a compromise. Still, preshared keys
have to be stored safely by both the server and the client—a challenging task in practice, especially on the
client’s side. Diffie–Hellman-based 0-RTT hence poses weaker requirements in that respect as the client
here only has to store the public part of a semi-static key.

9 Composition
Key exchange protocols would be of limited use if applied in isolation; in general the derived keys are
meant to be deployed in a follow-up (or overall) protocol. The most common application is of course the
encryption (and authentication) of data sent between the two involved parties within a (cryptographic)
channel protocol, with the TLS record protocol being a prime example. The TLS 1.3 handshakes (with
or without 0-RTT) additionally derive further keys for different purposes, namely the resumption master
secret RMS (in non-PSK modes) enabling follow-up abbreviated (preshared-key) handshakes and the
exporter master secret EMS which can be used to derive additional key material. For both, the key usage
in the cryptographic channel as well as the usage for other purposes, it is desirable to modularize the
analysis, treating key exchange and the composed protocol(s) independently and devising automatically
the security of the combined execution.

The approach inspires studying the generic compositional guarantees the TLS 1.3 handshake or, in
general, a (multi-stage) key exchange protocol can provide. For classical (non–multi-stage) key exchange
protocols in the Bellare–Rogaway model [BR94] this has been argued formally by Brzuska et al. [BFWW11],
and lifted to the multi-stage setting by Fischlin and Günther [FG14]. Intuitively, their composition theorem
attests that keys derived in a secure (multi-stage) key exchange protocol KE (satisfying certain additional
conditions) can be securely used within any symmetric-key protocol Π. This result in particular subsumes
usage in an arbitrary channel protocol. But, in case of TLS 1.3, it can also be used to argue security of
using the resumption master secret established in a full handshake as pre-shared key for a later abbreviated

45

handshake, as done by Dowling et al. [DFGS15a, DFGS16]. Here, security of the composed protocol KEi; Π
is intuitively defined as the symmetric-key protocol Π being secure when using the stage-i keys established
in the key exchange protocol KE (see [FG14, DFGS15a, DFGS16] for a formal definition).

We augment the multi-stage composition result by Fischlin and Günther [FG14] and extended to—
in particular—the preshared-secret setting and multiple concurrent authentication modes by Dowling
et al. [DFGS15a, DFGS16], in order to also capture replayability of keys—which are not generically
composable—based on our extended multi-stage key exchange model. The distinction between inter-
nal and external (usage of) keys furthermore is eminently useful for defining composition, since it elegantly
replaces the necessary informal restriction to final keys in prior theorems.

As its original proof [FG14, DFGS15a] applies with marginal changes, we only state the composition
theorem and briefly discuss the necessary modifications to the proof.

Theorem 9.1 (Multi-stage composition). Let KE be a Multi-Stage-secure key exchange protocol (in the
public-key or preshared-secret setting) providing key independence and stage-j forward secrecy with prop-
erties (M,AUTH,USE,REPLAY) and key distribution D, and that allows for efficient multi-stage session
matching26. Let Π be a symmetric-key protocol that is secure w.r.t. some game GΠ and has a key gener-
ation algorithm that outputs keys with distribution D. Then the composition KEi; Π for any external and
non-replayable stage i ≥ j (i.e., REPLAYi = nonreplayable and USEi = external) is secure w.r.t. the com-
posed security game GKEi;Π. Formally, for any efficient adversary A against GKEi;Π there exist efficient
algorithms B1,B2,B3 such that

AdvGKEi;Π
KEi;Π,A ≤ AdvMatch

KE,B1 + ns · AdvMulti-Stage,D
KE,B2

+ AdvGΠ
Π,B3

,

where ns is the maximum number of sessions in the key exchange game.

Compared to the previous result [DFGS16], our theorem statement incorporates two changes which
are reflected in the proof as follows.

First, we guarantee composition for any external key instead of only for final keys. Since for external
keys the tested random key in the Test query of our model (for btest = 0) does not replace the actual key in
subsequent protocol steps, after the hybrid proof step all stage-i session keys are random and independent
of the key exchange (subgame), hence allowing for an independent treatment of the protocol subgame.
(This requirement was satisfied in [FG14, DFGS15a, DFGS16] through demanding that the composed key
is final and therefore by definition not used in the key exchange.) If a key is instead internal (i.e., is used
already within the key exchange), we cannot hope for any generic compositional security for that key. To
give an example, say that the key is used in the key exchange to produce a MAC value, then composing
the key with the according MAC protocol would—in the general sense—be insecure as an adversary can
simply present the MAC value seen in the key exchange as a valid “fresh” forgery in the MAC-security
game.

Second, we require that a key must be non-replayable (which was inherently demanded for all keys in
the previous multi-stage models). Most notably, security of symmetric-key protocols in general expectedly
breaks down when the same secret key is used in two separate instances of a protocol (due to a replay).
Moreover, in the public-key setting, non-replayability is a necessary condition for a composed key (similar to
requiring the key to be forward secret, i.e., resilient to Corrupt queries) in order to not become compromised
through a RevealSemiStaticKey query issued after the key was derived and, hence, potentially already used
within the symmetric-key protocol. Recall that, in our model, we treat compromises of long-term and
semi-static keys independently through the Corrupt resp. RevealSemiStaticKey query.

26Multi-stage session matching is a technical notion which essentially requires that it is publicly decidable from the transcript
whether two sessions are partnered or not when given all keys derived so far (see [DFGS15b] for a formal definition).

46

Acknowledgments
We thank the anonymous reviewers for valuable comments. We thank Markulf Kohlweiss for insightful
discussions on the necessity of the PRF-ODH assumption for proofs of the TLS 1.3 handshakes. This work
has been co-funded by the DFG as part of project S4 within the CRC 1119 CROSSING.

References
[ABR01] Michel Abdalla, Mihir Bellare, and Phillip Rogaway. The oracle Diffie-Hellman assumptions

and an analysis of DHIES. In David Naccache, editor, Topics in Cryptology – CT-RSA 2001,
volume 2020 of Lecture Notes in Computer Science, pages 143–158, San Francisco, CA, USA,
April 8–12, 2001. Springer, Heidelberg, Germany. (Cited on page 9.)

[BCK96] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message au-
thentication. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109
of Lecture Notes in Computer Science, pages 1–15, Santa Barbara, CA, USA, August 18–22,
1996. Springer, Heidelberg, Germany. (Cited on pages 8, 9, and 22.)

[BFWW11] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams. Compos-
ability of Bellare-Rogaway key exchange protocols. In Yan Chen, George Danezis, and Vitaly
Shmatikov, editors, ACM CCS 11: 18th Conference on Computer and Communications Se-
curity, pages 51–62, Chicago, Illinois, USA, October 17–21, 2011. ACM Press. (Cited on
pages 7, 11, 18, and 45.)

[BR94] Mihir Bellare and Phillip Rogaway. Entity authentication and key distribution. In Douglas R.
Stinson, editor, Advances in Cryptology – CRYPTO’93, volume 773 of Lecture Notes in
Computer Science, pages 232–249, Santa Barbara, CA, USA, August 22–26, 1994. Springer,
Heidelberg, Germany. (Cited on pages 10, 17, and 45.)

[Brz13] Christina Brzuska. On the Foundations of Key Exchange. PhD thesis, Technische Universität
Darmstadt, Darmstadt, Germany, 2013. http://tuprints.ulb.tu-darmstadt.de/3414/.
(Cited on page 18.)

[BWM99] Simon Blake-Wilson and Alfred Menezes. Authenticated Diffie-Hellman key agreement pro-
tocols (invited talk). In Stafford E. Tavares and Henk Meijer, editors, SAC 1998: 5th
Annual International Workshop on Selected Areas in Cryptography, volume 1556 of Lecture
Notes in Computer Science, pages 339–361, Kingston, Ontario, Canada, August 17–18, 1999.
Springer, Heidelberg, Germany. (Cited on pages 4 and 7.)

[CHSvdM16] Cas Cremers, Marko Horvat, Sam Scott, and Thyla van der Merwe. Automated verification
of TLS 1.3: 0-RTT, resumption and delayed authentication. In 2016 IEEE Symposium on
Security and Privacy, 2016. (Cited on page 8.)

[CK01] Ran Canetti and Hugo Krawczyk. Analysis of key-exchange protocols and their use for
building secure channels. In Birgit Pfitzmann, editor, Advances in Cryptology – EURO-
CRYPT 2001, volume 2045 of Lecture Notes in Computer Science, pages 453–474, Innsbruck,
Austria, May 6–10, 2001. Springer, Heidelberg, Germany. (Cited on pages 8 and 17.)

[CK02] Ran Canetti and Hugo Krawczyk. Security analysis of IKE’s signature-based key-exchange
protocol. In Moti Yung, editor, Advances in Cryptology – CRYPTO 2002, volume 2442 of

47

http://tuprints.ulb.tu-darmstadt.de/3414/

Lecture Notes in Computer Science, pages 143–161, Santa Barbara, CA, USA, August 18–
22, 2002. Springer, Heidelberg, Germany. http://eprint.iacr.org/2002/120/. (Cited on
page 11.)

[CKS09] David Cash, Eike Kiltz, and Victor Shoup. The twin Diffie-Hellman problem and applica-
tions. Journal of Cryptology, 22(4):470–504, October 2009. (Cited on page 8.)

[DFGS15a] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 handshake protocol candidates. In Indrajit Ray, Ninghui Li, and
Christopher Kruegel:, editors, ACM CCS 15: 22nd Conference on Computer and Commu-
nications Security, pages 1197–1210, Denver, CO, USA, October 12–16, 2015. ACM Press.
(Cited on pages 6, 7, 10, 11, 12, 13, 14, 17, 18, 24, 39, and 46.)

[DFGS15b] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 handshake protocol candidates. Cryptology ePrint Archive, Report
2015/914, 2015. http://eprint.iacr.org/2015/914. (Cited on pages 7, 26, 39, and 46.)

[DFGS16] Benjamin Dowling, Marc Fischlin, Felix Günther, and Douglas Stebila. A cryptographic
analysis of the TLS 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology
ePrint Archive, Report 2016/081, 2016. http://eprint.iacr.org/2016/081. (Cited on
pages 6, 7, 9, 10, 11, 12, 18, 24, 39, 44, and 46.)

[FG14] Marc Fischlin and Felix Günther. Multi-stage key exchange and the case of Google’s QUIC
protocol. In Gail-Joon Ahn, Moti Yung, and Ninghui Li, editors, ACM CCS 14: 21st
Conference on Computer and Communications Security, pages 1193–1204, Scottsdale, AZ,
USA, November 3–7, 2014. ACM Press. (Cited on pages 4, 6, 7, 8, 10, 11, 12, 13, 14, 18, 45, and 46.)

[FHKP13] Eduarda S. V. Freire, Dennis Hofheinz, Eike Kiltz, and Kenneth G. Paterson. Non-interactive
key exchange. In Kaoru Kurosawa and Goichiro Hanaoka, editors, PKC 2013: 16th Inter-
national Conference on Theory and Practice of Public Key Cryptography, volume 7778 of
Lecture Notes in Computer Science, pages 254–271, Nara, Japan, February 26 – March 1,
2013. Springer, Heidelberg, Germany. (Cited on page 8.)

[HJLS15] Britta Hale, Tibor Jager, Sebastian Lauer, and Jörg Schwenk. Speeding: On low-latency
key exchange. Cryptology ePrint Archive, Report 2015/1214, 2015. http://eprint.iacr.
org/2015/1214. (Cited on pages 3 and 8.)

[HK11] Shai Halevi and Hugo Krawczyk. One-pass HMQV and asymmetric key-wrapping. In Dario
Catalano, Nelly Fazio, Rosario Gennaro, and Antonio Nicolosi, editors, PKC 2011: 14th
International Conference on Theory and Practice of Public Key Cryptography, volume 6571
of Lecture Notes in Computer Science, pages 317–334, Taormina, Italy, March 6–9, 2011.
Springer, Heidelberg, Germany. (Cited on page 8.)

[JKSS12] Tibor Jager, Florian Kohlar, Sven Schäge, and Jörg Schwenk. On the security of TLS-DHE
in the standard model. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances in
Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages
273–293, Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany.
(Cited on pages 7, 9, and 32.)

[KBC97] H. Krawczyk, M. Bellare, and R. Canetti. HMAC: Keyed-Hashing for Message Authentica-
tion. RFC 2104 (Informational), February 1997. Updated by RFC 6151. (Cited on page 8.)

48

http://eprint.iacr.org/2002/120/
http://eprint.iacr.org/2015/914
http://eprint.iacr.org/2016/081
http://eprint.iacr.org/2015/1214
http://eprint.iacr.org/2015/1214

[KPW13] Hugo Krawczyk, Kenneth G. Paterson, and Hoeteck Wee. On the security of the TLS
protocol: A systematic analysis. In Ran Canetti and Juan A. Garay, editors, Advances
in Cryptology – CRYPTO 2013, Part I, volume 8042 of Lecture Notes in Computer Sci-
ence, pages 429–448, Santa Barbara, CA, USA, August 18–22, 2013. Springer, Heidelberg,
Germany. (Cited on pages 7 and 9.)

[Kra05] Hugo Krawczyk. HMQV: A high-performance secure Diffie-Hellman protocol. In Victor
Shoup, editor, Advances in Cryptology – CRYPTO 2005, volume 3621 of Lecture Notes in
Computer Science, pages 546–566, Santa Barbara, CA, USA, August 14–18, 2005. Springer,
Heidelberg, Germany. (Cited on pages 7 and 24.)

[Kra10] Hugo Krawczyk. Cryptographic extraction and key derivation: The HKDF scheme. In Tal
Rabin, editor, Advances in Cryptology – CRYPTO 2010, volume 6223 of Lecture Notes in
Computer Science, pages 631–648, Santa Barbara, CA, USA, August 15–19, 2010. Springer,
Heidelberg, Germany. (Cited on pages 8, 22, 26, and 33.)

[Kra16] Hugo Krawczyk. [TLS] Call for consensus: Removing DHE-based 0-RTT. https:
//mailarchive.ietf.org/arch/msg/tls/xmnvrKEQkEbD-u8HTeQkyitmclY, March 2016.
posting in above thread. (Cited on pages 6, 33, and 45.)

[KW15] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3. Cryptology ePrint
Archive, Report 2015/978, 2015. http://eprint.iacr.org/2015/978. (Cited on pages 8
and 18.)

[KW16] Hugo Krawczyk and Hoeteck Wee. The OPTLS protocol and TLS 1.3. In 2016 IEEE
European Symposium on Security and Privacy, pages 81–96. IEEE, March 2016. (Cited on
pages 3, 8, 18, and 44.)

[LC13] Adam Langley and Wan-Teh Chang. QUIC Crypto, June 2013. Revision 20130620. (Cited
on pages 4 and 6.)

[LC15] Adam Langley and Wan-Teh Chang. QUIC Crypto. https://docs.google.com/document/
d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/, July 2015. Revision 20150720.
(Cited on pages 5 and 11.)

[LJBN15] Robert Lychev, Samuel Jero, Alexandra Boldyreva, and Cristina Nita-Rotaru. How secure
and quick is QUIC? Provable security and performance analyses. In 2015 IEEE Sympo-
sium on Security and Privacy, pages 214–231, San Jose, CA, USA, May 17–21, 2015. IEEE
Computer Society Press. (Cited on page 4.)

[LLM07] Brian A. LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger security of authenticated
key exchange. In Willy Susilo, Joseph K. Liu, and Yi Mu, editors, ProvSec 2007: 1st Interna-
tional Conference on Provable Security, volume 4784 of Lecture Notes in Computer Science,
pages 1–16, Wollongong, Australia, November 1–2, 2007. Springer, Heidelberg, Germany.
(Cited on page 17.)

[PvdM16] Kenneth G. Paterson and Thyla van der Merwe. Reactive and proactive standardisation of
TLS. In Lidong Chen, David McGrew, and Chris Mitchell, editors, SSR 2016, volume 10074
of Lecture Notes in Computer Science, pages 160–186. Springer, December 2016. (Cited on
page 8.)

49

https://mailarchive.ietf.org/arch/msg/tls/xmnvrKEQkEbD-u8HTeQkyitmclY
https://mailarchive.ietf.org/arch/msg/tls/xmnvrKEQkEbD-u8HTeQkyitmclY
http://eprint.iacr.org/2015/978
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/

[PZS+13] W. Michael Petullo, Xu Zhang, Jon A. Solworth, Daniel J. Bernstein, and Tanja Lange.
MinimaLT: minimal-latency networking through better security. In Ahmad-Reza Sadeghi,
Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th Conference on Computer
and Communications Security, pages 425–438, Berlin, Germany, November 4–8, 2013. ACM
Press. (Cited on page 3.)

[QUI] QUIC, a multiplexed stream transport over UDP. https://www.chromium.org/quic. (Cited
on page 3.)

[Res15a] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-tls-tls13-
10. https://tools.ietf.org/html/draft-ietf-tls-tls13-10, October 2015. (Cited on
page 7.)

[Res15b] Eric Rescorla. 0-RTT and Anti-Replay (IETF TLS working group mailing list). https:
//www.ietf.org/mail-archive/web/tls/current/msg15594.html, March 2015. (Cited on
pages 4 and 5.)

[Res16a] Eric Rescorla. Should it be possible to do 0-RTT with the server signing (pull request #443).
https://github.com/tlswg/tls13-spec/issues/443, April 2016. (Cited on page 23.)

[Res16b] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-tls-
tls13-12. https://tools.ietf.org/html/draft-ietf-tls-tls13-12, March 2016. (Cited
on pages 3, 33, and 36.)

[Res16c] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-tls-
tls13-13. https://tools.ietf.org/html/draft-ietf-tls-tls13-13, May 2016. (Cited on
page 4.)

[Res16d] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-tls-tls13-
14. https://tools.ietf.org/html/draft-ietf-tls-tls13-14, 2016. (Cited on pages 20
and 22.)

[Res16e] Eric Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3 – draft-ietf-tls-tls13-
18. https://tools.ietf.org/html/draft-ietf-tls-tls13-18, October 2016. (Cited on
pages 3 and 5.)

[Res16f] Eric Rescorla. TLS 1.3 — draft-ietf-tls-tls13-12 (presentation at ietf 95 meeting). https:
//www.ietf.org/proceedings/95/slides/slides-95-tls-2.pdf, April 2016. (Cited on
pages 6 and 33.)

[WTSB16] David J. Wu, Ankur Taly, Asim Shankar, and Dan Boneh. Privacy, discovery, and authen-
tication for the internet of things. In Ioannis G. Askoxylakis, Sotiris Ioannidis, Sokratis K.
Katsikas, and Catherine A. Meadows, editors, ESORICS 2016: 21st European Symposium on
Research in Computer Security, Part II, volume 9879 of Lecture Notes in Computer Science,
pages 301–319, Heraklion, Greece, September 26–30, 2016. Springer, Heidelberg, Germany.
(Cited on page 3.)

50

https://www.chromium.org/quic
https://tools.ietf.org/html/draft-ietf-tls-tls13-10
https://www.ietf.org/mail-archive/web/tls/current/msg15594.html
https://www.ietf.org/mail-archive/web/tls/current/msg15594.html
https://github.com/tlswg/tls13-spec/issues/443
https://tools.ietf.org/html/draft-ietf-tls-tls13-12
https://tools.ietf.org/html/draft-ietf-tls-tls13-13
https://tools.ietf.org/html/draft-ietf-tls-tls13-14
https://tools.ietf.org/html/draft-ietf-tls-tls13-18
https://www.ietf.org/proceedings/95/slides/slides-95-tls-2.pdf
https://www.ietf.org/proceedings/95/slides/slides-95-tls-2.pdf

	Introduction
	Zero Round-Trip Time
	The Problem with Replays and How It Is (Not) Solved in QUIC and TLS 1.3
	Our Contribution
	Related Work

	Preliminaries
	Modeling Replayable 0-RTT in Multi-Stage Key Exchange
	Outline of the Model for Multi-Stage Key Exchange
	Adding 0-RTT to Multi-Stage Protocols
	Preliminaries
	Adversary Model
	Security of Multi-Stage Key Exchange Protocols
	Match Security
	Multi-Stage Security

	The TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshake Protocols
	Security of the TLS 1.3 draft-14 PSK and PSK-(EC)DHE 0-RTT Handshakes
	PSK(-only) 0-RTT Handshake
	PSK-(EC)DHE 0-RTT Handshake

	The TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake Protocol
	Security of the TLS 1.3 draft-12 (EC)DHE 0-RTT Handshake
	Comparing the QUIC and TLS 1.3 0-RTT Handshakes
	Composition

