
A preliminary version of this paper appears in Eurocrypt 2020. This is the full version.

Separate Your Domains:
NIST PQC KEMs, Oracle Cloning and Read-Only

Indifferentiability

Mihir Bellare1 Hannah Davis2 Felix Günther3

February 2020

Abstract
It is convenient and common for schemes in the random oracle model to assume access to

multiple random oracles (ROs), leaving to implementations the task —we call it oracle cloning—
of constructing them from a single RO. The first part of the paper is a case study of oracle cloning
in KEM submissions to the NIST Post-Quantum Cryptography standardization process. We
give key-recovery attacks on some submissions arising from mistakes in oracle cloning, and find
other submissions using oracle cloning methods whose validity is unclear. Motivated by this,
the second part of the paper gives a theoretical treatment of oracle cloning. We give a definition
of what is an “oracle cloning method” and what it means for such a method to “work,” in a
framework we call read-only indifferentiability, a simple variant of classical indifferentiability that
yields security not only for usage in single-stage games but also in multi-stage ones. We formalize
domain separation, and specify and study many oracle cloning methods, including common
domain-separating ones, giving some general results to justify (prove read-only indifferentiability
of) certain classes of methods. We are not only able to validate the oracle cloning methods used
in many of the unbroken NIST PQC KEMs, but also able to specify and validate oracle cloning
methods that may be useful beyond that.

1 Dept. of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La Jolla,
California 92093, USA. Email: mihir@eng.ucsd.edu. URL: cseweb.ucsd.edu/˜mihir. Supported in part by NSF
grant CNS-1717640 and a gift from Microsoft.

2 Department of Computer Science & Engineering, University of California San Diego, 9500 Gilman Drive, La
Jolla, California 92093, USA. Email: h3davis@eng.ucsd.edu. Supported in part by NSF grant CNS-1717640.

3 Department of Computer Science, ETH Zürich, Universitätstrasse 6, 8092 Zürich, Switzerland. Email:
mail@felixguenther.info. URL: https://www.felixguenther.info. Supported in part by Research Fellowship
grant GU 1859/1-1 of the German Research Foundation (DFG) and NSF grant CNS-1717640.

1

Contents

1 Introduction 3

2 Oracle Cloning in NIST PQC Candidates 7
2.1 Design process . 7
2.2 The base KEM . 8
2.3 Submissions we break . 10
2.4 Submissions with unclear security . 11
2.5 Submissions with provable security but ambiguous specification 11
2.6 Submissions with clear provable security . 13

3 Preliminaries 13

4 Read-only indifferentiability of translating functors 14
4.1 Functors and read-only indifferentiability . 14
4.2 Translating functors . 16
4.3 Rd-indiff of translating functors . 18

5 Analysis of cloning functors 22

6 Oracle Cloning in KEMs 26

2

1 Introduction

Theoretical works giving, and proving secure, schemes in the random oracle (RO) model [10], often,
for convenience, assume access to multiple, independent ROs. Implementations, however, like to
implement them all via a single hash function like SHA256 that is assumed to be a RO.

The transition from one RO to many is, in principle, easy. One can use a method suggested
by BR [10] and usually called “domain separation.” For example to build three random oracles
H1, H2, H3 from a single one, H, define

H1(x) = H(〈1〉‖x), H2(x) = H(〈2〉‖x) and H3(x) = H(〈3〉‖x) , (1)
where 〈i〉 is the representation of integer i as a bit-string of some fixed length, say one byte. One
might ask if there is justifying theory: a proof that the above “works,” and a definition of what
“works” means. A likely response is that it is obvious it works, and theory would be pedantic.

If it were merely a question of the specific domain-separation method of Equation (1), we’d
be inclined to agree. But we have found some good reasons to revisit the question and look into
theoretical foundations. They arise from the NIST Post-Quantum Cryptography (PQC) standard-
ization process [34].

We analyzed the KEM submissions. We found attacks, breaking some of them, that arise from
incorrect ways of turning one random oracle into many, indicating that the process is error-prone.
We found other KEMs where methods other than Equation (1) were used and whether or not they
work is unclear. In some submissions, instantiations for multiple ROs were left unspecified. In
others, they differed between the specification and reference implementation.

Domain separation as per Equation (1) is a method, not a goal. We identify and name the
underlying goal, calling it oracle cloning— given one RO, build many, independent ones. (More
generally, given m ROs, build n > m ROs.) We give a definition of what is an “oracle cloning
method” and what it means for such a method to “work,” in a framework we call read-only in-
differentiability, a simple variant of classical indifferentiability [28]. We specify and study many
oracle cloning methods, giving some general results to justify (prove read-only indifferentiability of)
certain classes of them. The intent is not only to validate as many NIST PQC KEMs as possible
(which we do) but to specify and validate methods that will be useful beyond that.

Below we begin by discussing the NIST PQC KEMs and our findings on them, and then turn
to our theoretical treatment and results.

NIST PQC KEMs. In late 2016, NIST put out a call for post-quantum cryptographic algo-
rithms [34]. In the first round they received 28 submissions targeting IND-CCA-secure KEMs, of
which 17 remain in the second round [36].

Recall that in a KEM (Key Encapsulation Mechanism) KE, the encapsulation algorithm KE.E
takes the public key pk (but no message) to return a symmetric key K and a ciphertext C∗
encapsulating it, (C∗,K)←$ KE.E(pk). Given an IND-CCA KEM, one can easily build an IND-
CCA PKE scheme by hybrid encryption [17], explaining the focus of standardization on the KEMs.

Most of the KEM submissions (23 in the first round, 15 in the second round) are constructed
from a weak (OW-CPA, IND-CPA, ...) PKE scheme using either a method from Hofheinz, Hövelmanns
and Kiltz (HHK) [23] or a related method from [20, 39, 26]. This results in a KEM KE4, the subscript
to indicate that it uses up to four ROs that we’ll denote H1,H2,H3,H4. Results of [23, 20, 39, 26]
imply that KE4 is provably IND-CCA, assuming the ROs H1,H2,H3,H4 are independent.

Next, the step of interest for us, the oracle cloning: they build the multiple random oracles via
a single RO H , replacing Hi with an oracle F[H](i, ·), where we refer to the construction F as a
“cloning functor,” and F[H] means that F gets oracle access to H . This turns KE4 into a KEM
KE1 that uses only a single RO H , allowing an implementation to instantiate the latter with a

3

single NIST-recommended primitive like SHA3-512 or SHAKE256 [35]. (In some cases, KE1 uses a
number of ROs that is more than one but less than the number used by KE4, which is still oracle
cloning, but we’ll ignore this for now.)

Often the oracle cloning method (cloning functor) is not specified in the submission document;
we obtained it from the reference implementation. Our concern is the security of this method and
the security of the final, single-RO-using KEM KE1. (As above we assume the starting KE4 is secure
if its four ROs are independent.)

Oracle cloning in submissions. We surveyed the relevant (first- and second-round) NIST PQC
KEM submissions, looking in particular at the reference code, to determine what choices of cloning
functor F was made, and how it impacted security of KE1. Based on our findings, we classify the
submissions into groups as follows.

First is a group of successfully attacked submissions. We discover and specify attacks, enabled
through erroneous RO cloning, on three (first-round) submissions: BIG QUAKE [8], DAGS [7] and
Round2 [21]. (Throughout the paper, first-round submissions are in gray, second-round submissions
in bold.) Our attacks on BIG QUAKE and Round2 recover the symmetric key K from the ciphertext
C∗ and public key. Our attack on DAGS succeeds in partial key recovery, recovering 192 bits of
the symmetric key. These attacks are very fast, taking at most about the same time as taken by
the (secret-key equipped, prescribed) decryption algorithm to recover the key. None of our attacks
needs access to a decryption oracle, meaning we violate much more than IND-CCA.

Next is submissions with questionable oracle cloning. We put just one in this group, namely
NewHope [2]. Here we do not have proof of security in the ROM for the final instantiated scheme
KE1. We do show that the cloning methods used here do not achieve our formal notion of rd-indiff
security, but this does not result in an attack on KE1, so we do not have a practical attack either.
We recommend changes in the cloning methods that permit proofs.

Next is a group of ten submissions that use ad-hoc oracle cloning methods —as opposed, say,
to conventional domain separation as per Equation (1)— but for which our results (to be discussed
below) are able to prove security of the final single-RO scheme. In this group are BIKE [3], KCL [43],
LAC [27], Lizard [15], LOCKER [4], Odd Manhattan [37], ROLLO-II [29], Round5 [6], SABER [18] and
Titanium [42]. Still, the security of these oracle cloning methods remains brittle and prone to
vulnerabilities under slight changes.

A final group of twelve submissions did well, employing something like Equation (1). In par-
ticular our results can prove these methods secure. In this group are Classic McEliece [12],
CRYSTALS-Kyber [5], EMBLEM [40], FrodoKEM [33], HQC [31], LIMA [41], NTRU-HRSS-KEM [24], NTRU
Prime [13], NTS-KEM [1], RQC [30], SIKE [25] and ThreeBears [22].

This classification omits 14 KEM schemes that do not fit the above framework. (For example
they do not target IND-CCA KEMs, do not use HHK-style transforms, or do not use multiple
random oracles.)

Lessons and response. We see that oracle cloning is error-prone, and that it is sometimes
done in ad-hoc ways whose validity is not clear. We suggest that oracle cloning not be left to
implementations. Rather, scheme designers should give proof-validated oracle cloning methods for
their schemes. To enable this, we initiate a theoretical treatment of oracle cloning. We formalize
oracle cloning methods, define what it means for one to be secure, and specify a library of proven-
secure methods from which designers can draw. We are able to justify the oracle cloning methods
of many of the unbroken NIST PQC KEMs. The framework of read-only indifferentiability we
introduce and use for this purpose may be of independent interest.

The NIST PQC KEMs we break are first-round candidates, not second-round ones, and in
some cases other attacks on the same candidates exist, so one may say the breaks are no longer

4

interesting. We suggest reasons they are. Their value is illustrative, showing not only that errors
in oracle cloning occur in practice, but that they can be devastating for security. In particular, the
extensive and long review process for the first-round NIST PQC submissions seems to have missed
these simple attacks, perhaps due to lack of recognition of the importance of good oracle cloning.

Indifferentiability background. Let SS,ES be sets of functions. (We will call them the start-
ing and ending function spaces, respectively.) A functor F: SS → ES is a deterministic algorithm
that, given as oracle a function s ∈ SS, defines a function F[s] ∈ ES. Indifferentiability of F is a
way of defining what it means for F[s] to emulate e when s, e are randomly chosen from SS,ES,
respectively. It permits a “composition theorem” saying that if F is indifferentiable then use of e
in a scheme can be securely replaced by use of F[s].

Maurer, Renner and Holenstein (MRH) [28] gave the first definition of indifferentiability and cor-
responding composition theorem. However, Ristenpart, Shacham and Shrimpton (RSS) [38] pointed
out a limitation, namely that it only applies to single-stage games. MRH-indiff fails to guarantee
security in multi-stage games, a setting that includes many goals of interest including security under
related-key attack, deterministic public-key encryption and encryption of key-dependent messages.
Variants of MRH-indiff [16, 38, 19, 32] tried to address this, with limited success.

Rd-indiff. Indifferentiability is the natural way to treat oracle cloning. A cloning of one function
into n functions (n = 4 above) can be captured as a functor (we call it a cloning functor) F that
takes the single RO s and for each i ∈ [1..n] defines a function F[s](i, ·) that is meant to emulate a
RO. We will specify many oracle cloning methods in this way.

We define in Section 4 a variant of indifferentiability we call read-only indifferentiability (rd-
indiff). The simulator —unlike for reset-indiff [38]— has access to a game-maintained state st, but
—unlike MRH-indiff [28]— that state is read-only, meaning the simulator cannot alter it across
invocations. Rd-indiff is a stronger requirement than MRH-indiff (if F is rd-indiff then it is MRH-
indiff) but a weaker one than reset-indiff (if F is reset-indiff then it is rd-indiff). Despite the latter,
rd-indiff, like reset-indiff, admits a composition theorem showing that an rd-indiff F may securely
substitute a RO even in multi-stage games. (The proof of RSS [38] for reset-indiff extends to show
this.) We do not use reset-indiff because some of our cloning functors do not meet it, but they do
meet rd-indiff, and the composition benefit is preserved.

General results. In Section 4, we define translating functors. These are simply ones whose
oracle queries are non-adaptive. (In more detail, a translating functor determines from its input W
a list of queries, makes them to its oracle and, from the responses and W , determines its output.)
We then define a condition on a translating functor F that we call invertibility and show that if
F is an invertible translating functor then it is rd-indiff. This is done in two parts, Theorems 4.1
and 4.2, that differ in the degree of invertibility assumed. The first, assuming the greater degree of
invertibility, allows a simpler proof with a simulator that does not need the read-only state allowed
in rd-indiff. The second, assuming the lesser degree of invertibility, depends on a simulator that
makes crucial use of the read-only state. It sets the latter to a key for a PRF that is then used to
answer queries that fall outside the set of ones that can be trivially answered under the invertibility
condition. This use of a computational primitive (a PRF) in the indifferentiability context may be
novel and may seem odd, but it works.

We apply this framework to analyze particular, practical cloning functors, showing that these
are translating and invertible, and then deducing their rd-indiff security. But the above-mentioned
results are stronger and more general than we need for the application to oracle cloning. The intent
is to enable further, future applications.

Analysis of oracle cloning methods. We formalize oracle cloning as the task of designing

5

a functor (we call it a cloning functor) F that takes as oracle a function s ∈ SS in the starting
space and returns a two-input function e = F[s] ∈ ES, where e(i, ·) represents the i-th RO for
i ∈ [1..n]. Section 5 presents the cloning functors corresponding to some popular and practical
oracle cloning methods (in particular ones used in the NIST PQC KEMs), and shows that they are
translating and invertible. Our above-mentioned results allow us to then deduce they are rd-indiff,
which means they are safe to use in most applications, even ones involving multi-stage games. This
gives formal justification for some common oracle cloning methods. We now discuss some specific
cloning functors that we treat in this way.

The prefix (cloning) functor Fpf(p) is parameterized by a fixed, public vector p such that no
entry of p is a prefix of any other entry of p. Receiving function s as an oracle, it defines function
e = Fpf(p)[s] by e(i,X) = s(p[i]‖X), where p[i] is the ith element of vector p. When p[i] is a
fixed-length bitstring representing the integer i, this formalizes Equation (1).

Some NIST PQC submissions use a method we call output splitting. The simplest case is that
we want e(i, ·), . . . , ε(n, ·) to all have the same output length L. We then define e(i,X) as bits
(i − 1)L+1 through iL of the given function s applied to X. That is, receiving function s as
an oracle, the splitting (cloning) functor Fspl returns function e = Fspl[s] defined by e(i,X) =
s(X)[(i− 1)L+1..iL].

An interesting case, present in some NIST PQC submissions, is trivial cloning: just set e(i,X) =
s(X) for all X. We formalize this as the identity (cloning) functor Fid defined by Fid[s](i,X) =
s(X). Clearly, this is not always secure. It can be secure, however, for usages that restrict queries
in some way. One such restriction, used in several NIST PQC KEMs, is length differentiation:
e(i, ·) is queried only on inputs of some length li, where l1, . . . , ln are chosen to be distinct. We are
able to treat this in our framework using the concept of working domains that we discuss next, but
we warn that this method is brittle and prone to misuse.

Working domains. One could capture trivial cloning with length differentiation as a restric-
tion on the domains of the ending functions, but this seems artificial and dangerous because the
implementations do not enforce any such restriction; the functions there are defined on their full
domains and it is, apparently, left up to applications to use the functions in a way that does not
get them into trouble. The approach we take is to leave the functions defined on their full domains,
but define and ask for security over a subdomain, which we called the working domain. A choice
of working domain W accordingly parameterizes our definition of rd-indiff for a functor, and also
the definition of invertibility of a translating functor. Our result says that the identity functor is
rd-indiff for certain choices of working domains that include the length differentiation one.

Making the working domain explicit will, hopefully, force the application designer to think
about, and specify, what it is, increasing the possibility of staying out of trouble. Working domains
also provide flexibility and versatility under which different applications can make different choices
of the domain.

Working domains not being present in prior indifferentiability formalizations, the comparisons,
above, of rd-indiff with these prior formalizations assume the working domain is the full domain
of the ending functions. Working domains alter the comparison picture; a cloning functor which is
rd-indiff on a working domain may not be even MRH-indiff on its full domain.

Application to KEMs. The framework above is broad, staying in the land of ROs and not
speaking of the usage of these ROs in any particular cryptographic primitive or scheme. As such,
it can be applied to analyze RO instantiation in many primitives and schemes. In Section 6, we
exemplify its application in the realm of KEMs as the target of the NIST PQC designs.

This may seem redundant, since an indifferentiability composition theorem says exactly that
once indifferentiability of a functor has been shown, “all” uses of it are secure. However, prior

6

indifferentiability frameworks do not consider working domains, so the known composition theorems
apply only when the working domain is the full one. (Thus the reset-indiff composition theorem
of [38] extends to rd-indiff so that we have security for applications whose security definitions are
underlain by either single or multi-stage games, but only for full working domains.)

To give a composition theorem that is conscious of working domains, we must first ask what they
are, or mean, in the application. We give a definition of the working domain of a KEM KE. This
is the set of all points that the scheme algorithms query to the ending functions in usage, captured
by a certain game we give. (Queries of the adversary may fall outside the working domain.) Then
we give a working-domain-conscious composition theorem for KEMs (Theorem 6.1) that says the
following. Say we are given an IND-CCA KEM KE whose oracles are drawn from a function space
KE.FS. Let F: SS → KE.FS be a functor, and let KE be the KEM obtained by implementing the
oracles of the KE via F. (So the oracles of this second KEM are drawn from the function space
KE.FS = SS.) Let W be the working domain of KE, and assume F is rd-indiff over W. Then KE
is also IND-CCA. Combining this with our rd-indiff results on particular cloning functors justifies
not only conventional domain separation as an instantiation technique for KEMs, but also more
broadly the instantiations in some NIST PQC submissions that do not use domain separation, yet
whose cloning functors are rd-diff over the working domain of their KEMs. The most important
example is the identity cloning functor used with length differentiation.

A key definitional element of our treatment that allows the above is, following [9], to embellish
the syntax of a scheme (here a KEM KE) by having it name a function space KE.FS from which it
wants its oracles drawn. Thus, the scheme specification must say how many ROs it wants, and of
what domains and ranges. In contrast, in the formal version of the ROM in [10], there is a single,
scheme-independent RO that has some fixed domain and range, for example mapping {0, 1}∗ to
{0, 1}. This leaves a gap, between the object a scheme wants and what the model provides, that
can lead to error. We suggest that, to reduce such errors, schemes specified in standards include a
specification of their function space.

2 Oracle Cloning in NIST PQC Candidates

Notation. A KEM scheme KE specifies an encapsulation KE.E that, on input a public encryption
key pk returns a session key K, and a ciphertext C∗ encapsulating it, written (C∗,K)←$ KE.E(pk).
A PKE scheme PKE specifies an encryption algorithm PKE.E that, on input pk, message M ∈
{0, 1}PKE.ml and randomness R, deterministically returns ciphertext C ← PKE.E(pk,M ;R). For
neither primitive will we, in this section, be concerned with the key generation or decapsulation /
decryption algorithm. We might write KE[X1, X2, . . .] to indicate that the scheme has oracle access
to functions X1, X2, . . ., and correspondingly then write KE.E[X1, X2, . . .], and similarly for PKE.

2.1 Design process

The literature [23, 20, 39, 26] provides many transforms that take a public-key encryption scheme
PKE, assumed to meet some weaker-than-IND-CCA notion of security we denote Spke (for example,
OW-CPA, OW-PCA or IND-CPA), and, with the aid of some number of random oracles, turn PKE
into a KEM that is guaranteed (proven) to be IND-CCA assuming the ROs are independent. We’ll
refer to such transforms as sound. Many (most) KEMs submitted to the NIST Post-Quantum
Cryptography standardization process were accordingly designed as follows:

(1) First, they specify a Spke-secure public-key encryption scheme PKE.

7

(2) Second, they pick a sound transform T and obtain KEM KE4[H1,H2,H3,H4] = T[PKE,H2,H3,H4].
(The notation is from [23]. The transforms use up to three random oracles that we are de-
noting H2,H3,H4, reserving H1 for possible use by the PKE scheme.) We refer to KE4 (the
subscript refers to its using 4 oracles) as the base KEM, and, as we will see, it differs across
the transforms.

(3) Finally —the under-the-radar step that is our concern— the ROs H1, . . . ,H4 are constructed
from cryptographic hash functions to yield what we call the final KEM KE1. In more detail,
the submissions make various choices of cryptographic hash functions F1, . . . ,Fm that we call
the base functions, and, for i = 1, 2, 3, 4, specify constructions Ci that, with oracle access to
the base functions, define the Hi, which we write as Hi ← Ci[F1, . . . ,Fm]. We call this process
oracle cloning, and we call Hi the final functions. (Common values of m are 1, 2.) The actual,
submitted KEM KE1 (the subscript because m is usually 1) uses the final functions, so that
its encapsulation algorithm can be written as:

KE1.E[F1, . . . ,Fm](pk)
For i = 1, 2, 3, 4 do Hi ← Ci[F1, . . . ,Fm]
(C∗,K)←$ KE4.E[H1,H2,H3,H4](pk)
Return (C∗,K)

The question now is whether the final KE1 is secure. We will show that, for some submissions,
it is not. This is true for the choices of base functions F1, . . . ,Fm made in the submission, but
also if these are assumed to be ROs. It is true despite the soundness of the transform, meaning
insecurity arises from poor oracle cloning, meaning choices of the constructions Ci. We will then
consider submissions for which we have not found an attack. In the latter analysis, we are willing
to assume (as the submissions implicitly do) that F1, . . . ,Fm are ROs, and we then ask whether
the final functions are “close” to independent ROs.

2.2 The base KEM

We need first to specify the base KE4 (the result of the sound transform, from step (2) above). The
NIST PQC submissions typically cite one of HHK [23], Dent [20], SXY [39] or JZCWM [26] for
the sound transform they use, but our examinations show that the submissions have embellished,
combined or modified the original transforms. The changes do not (to best of our knowledge) violate
soundness (meaning the used transforms still yield an IND-CCA KE4 if H2,H3,H4 are independent
ROs and PKE is Spke-secure) but they make a succinct exposition challenging. We address this
with a framework to unify the designs via a single, but parameterized, transform, capturing the
submission transforms by different parameter choices.

Figure 1 (top) shows the encapsulation algorithm KE4.E of the KEM that our parameterized
transform associates to PKE and H1, H2, H3, H4. The parameters are the variables X,Y, Z (they
will be functions of other quantities in the algorithms), a boolean D, and an integer k∗. When
choices of these are made, one gets a fully-specified transform and corresponding base KEM KE4.
Each row in the table in the same Figure shows one such choice of parameters, resulting in 15
fully-specified transforms. The final column shows the submissions that use the transform.

The encapsulation algorithm at the top of Figure 1 takes input a public key pk and has oracle
access to functions H1, H2, H3, H4. At line 1, it picks a random seed M of length the message length
of the given PKE scheme. Boolean D being true (as it is with just one exception) means PKE.E is
randomized. In that case, line 2 applies H2 to X (the latter, determined as per the table, depends
on M and possibly also on pk) and parses the output to get coins R for PKE.E and possibly (if the

8

Algorithm KE4.E[H1, H2, H3, H4](pk):
1 M←$ {0, 1}PKE.ml ; R← ε

2 If (D = true) then R ‖K′ ← H2(X) // |K′| = k∗

3 C ← PKE.E[H1](pk, M ; R)
4 C∗ ← C ‖Y

5 K ← H4(Z) ; Return (C∗, K)

D k∗ X Y Z Used in

T1 true 0 M ε M
LIMA,

Odd Manhattan
T2 true 0 pk‖M ε pk‖M ThreeBears

T3 true 0 M ε M‖C BIKE-1-CCA
BIKE-3-CCA, LAC

T4 true 0 M‖pk ε M‖C SIKE
T5 true 0 M H3(X) M‖C HQC, RQC, Titanium
T6 true > 0 M‖H3(pk) ε K ′‖C SABER
T7 true > 0 H3(pk)‖H3(M) ε K ′‖H3(C) CRYSTALS-Kyber

T8 true 0 M H3(X) M
DAGS,

NTRU-HRSS-KEM

T9 true 0 M H3(X) M‖C‖Y
ROLLO-II, EMBLEM,
Lizard, LOCKER,

BIG QUAKE
T10 true > 0 H4(M)‖H4(pk) H3(X) K ′‖H4(C‖Y) NewHope

T11 true > 0 M‖pk H3(X) K ′‖C‖Y FrodoKEM, Round2
Round5

T12 true > 0 pk‖M H3(X) K ′‖C KCL
T13 true > 0 H3(pk)‖M ε C‖K ′ FrodoKEM
T14 false 0 ⊥ H3(M) M‖C‖Y Classic McEliece
T15 true 0 M ε R‖M NTS-KEM
T16 false 0 ⊥ M‖pk M‖C‖Y Streamlined NTRU Prime
T17 true 0 M M‖pk M‖C‖Y NTRU LPRime

Figure 1: Top: Encapsulation algorithm of the base KEM scheme produced by our parameterized
transform. Bottom: Choices of parameters X,Y, Z,D, k∗ resulting in specific transforms used by
the NIST PQC submissions. Second-round submissions are in bold, first-round submissions in
gray. Submissions using different transforms in the two rounds appear twice.

parameter k∗ 6= 0) an additional string K ′. At line 3, a ciphertext C is produced by encrypting
the seed M using PKE.E with public key pk and coins R. In some schemes, a second portion of
the ciphertext, Y , often called the “confirmation”, is derived from X or M , using H3, as shown in
the table, and line 4 then defines C∗. Finally, H4 is used as a key derivation function to extract a
symmetric key K from the parameter Z, which varies widely among transforms.

In total, 26 of the 39 NIST PQC submissions which target KEMs in either the first or second
round use transforms which fall into our framework. The remaining schemes do not use more
than one random oracle, construct KEMs without transforming PKE schemes, or target security
definitions other than IND-CCA.

9

2.3 Submissions we break

We present attacks on BIG QUAKE [8], DAGS [7], and Round2 [21]. These attacks succeed in full or
partial recovery of the encapsulated KEM key from a ciphertext, and are extremely fast. We have
implemented the attacks to verify them.

Although none of these schemes progressed to Round 2 of the competition without significant
modification, to the best of our knowledge, none of the attacks we described were pointed out during
the review process. Given the attacks’ superficiality, this is surprising and suggests to us that more
attention should be paid to oracle cloning methods and their vulnerabilities during review.
Randomness-based decryption. The PKE schemes used by BIG QUAKE and Round2 have the
property that given a ciphertext C ← PKE.E(pk,M ;R) and also given the coins R, it is easy to
recover M , even without knowledge of the secret key. We formalize this property, saying PKE allows
randomness-based decryption, if there is an (efficient) algorithm PKE.DecR such that PKE.DecR(pk,
PKE.E(pk,M ;R), R) = M for any public key pk, coins R and message m. This will be used in our
attacks.
Attack on BIG QUAKE. The base KEM KE1[H1, H2, H3, H4] is given by the transform T9 in the
table of Figure 1. The final KEM KE2[F] uses a single function F to instantiate the random oracles,
which it does as follows. It sets H3 = H4 = F and H2 = W [F] ◦ F for a certain function W (the
rejection sampling algorithm) whose details will not matter for us. The notation W [F] meaning
that W has oracle access to F . The following attack (explanations after the pseudocode) recovers
the encapsulated KEM key K from ciphertext C∗←$ KE1.E[F](pk)—

Adversary A[F](pk, C∗) // Input public key and ciphertext, oracle for F
1. C‖Y ← C∗ // Parse C∗ to get PKE ciphertext C and Y = H3(M)
2. R←W [F](Y) // Apply function W [F] to Y to recover coins R
3. M ← PKE.DecR(pk, C,R) // Use randomness-based decryption for PKE
4. K ← F (M) ; Return K

As per T9 we have Y = H3(M) = F (M). The coins for PKE.E are R = H2(M) = (W [F]◦F)(M) =
W [F](F (M)) = W [F](Y). Since Y is in the ciphertext, the coins R can be recovered as shown
at line 2. The PKE scheme allows randomness-based decryption, so at line 3 we can recover the
message M underlying C using algorithm PKE.DecR. But K = H4(M) = F (M), so K can now
be recovered as well. In conclusion, the specific cloning method chosen by BIG QUAKE leads to
complete recovery of the encapsulated key from the ciphertext.
Attack on Round2. The base KEM KE1[H2, H3, H4] is given by the transform T11 in the table
of Figure 1. The final KEM KE2[F] uses a single base function F to instantiate the final functions,
which it does as follows. It sets H4 = F . The specification and reference implementation differ in
how H2, H3 are defined: In the former, H2(x) = F (F (x)) ‖F (x) and H3(x) = F (F (F (x))), while,
in the latter, H2(x) = F (F (F (x))) ‖F (x) and H3(x) = F (F (X)). These differences arise from
differences in the way the output of a certain function W [F] is parsed.

Our attack is on the reference-implementation version of the scheme. We need to also know
that the scheme sets k∗ so that R‖K ′ ← H2(X) with H2(X) = F (F (F (X)))‖F (X) results in
R = F (F (F (X))). But Y = H3(X) = F (F (X)), so R = F (Y) can be recovered from the
ciphertext. Again exploiting the fact that the PKE scheme allows randomness-based decryption,
we obtain the following attack that recovers the encapsulated KEM key K from ciphertext C∗←$

KE1.E[F](pk)—

Adversary A[F](pk, C∗) // Input public key and ciphertext, oracle for F

10

1. C‖Y ← C∗; R← F (Y)
2. M ← PKE.DecR(pk, C,R) ; K ← F (M) ; Return K

This attack exploits the difference between the way H2, H3 are defined across the specification and
implementation, which may be a bug in the implementation with regard to the parsing of W [F](x).
However, the attack also exploits dependencies between H2 and H3, which ought not to exist when
instantiating what are required to be distinct random oracles.

Round2 was incorporated into the second-round submission Round5, which specifies a different
base function and cloning functor (the latter of which uses the secure method we call “output
splitting”) to instantiate oracles H2 and H3. This attack therefore does not apply to Round5.

Attack on DAGS. If x is a byte string we let x[i] be its i-th byte, and if x is a bit string we let
xi be its i-th bit. We say that a function V is an extendable output function if it takes input a
string x and an integer ` to return an `-byte output, and `1 ≤ `2 implies that V (x, `1) is a prefix of
V (x, `2). If v = v1v2v3v4v5v6v7v8 is a byte then let Z(v) = 00v3v4v5v6v7v8 be obtained by zeroing
out the first two bits. If y is a string of ` bytes then let Z ′(y) = Z(y[1])‖ · · · ‖Z(y[`]). Now let
V ′(x, `) = Z ′(V (x, `)).

The base KEM KE1[H1, H2, H3, H4] is given by the transform T8 in the table of Figure 1. The
final KEM KE2[V] uses an extendable output function V to instantiate the random oracles, which
it does as follows. It sets H2(x) = V ′(x, 512) and H3(x) = V ′(x, 32). It sets H4(x) = V (x, 64).

As per T8 we have K = H4(M) and Y = H3(M). Let L be the first 32 bytes of the 64-byte
K. Then Y = Z ′(L). So Y reveals 32 · 6 = 192 bits of K. Since Y is in the ciphertext, this results
in a partial encapsulated-key recovery attack. The attack reduces the effective length of K from
64 · 8 = 512 bits to 512− 192 = 320 bits, meaning 37.5% of the encapsulated key is recovered. Also
R = H2(M), so Y , as part of the ciphertext, reveals 32 bytes of R, which does not seem desirable,
even though it is not clear how to exploit it for an attack.

2.4 Submissions with unclear security

For the scheme NewHope [2], we can give neither an attack nor a proof of security. However,
we can show that the final functions H2, H3, H4 produced by the cloning functor FNewHope with
oracle access to a single extendable-output function V are differentiable from independent random
oracles. The cloning functor FNewHope sets H1(x) = V (x, 128) and H4 = V (x, 32). It computes
H2 and H3 from V using the output splitting cloning functor. Concretely, KE2 parses V (x, 96) as
H2(x) ‖H3(x), where H2 has output length 64 bytes and H3 has output length 32 bytes. Because
V is an extendable-output function, H4(x) will be a prefix of H2(x) for any string x.

We do not know how to exploit this correlation to attack the IND-CCA security of the final
KEM scheme KE2[V], and we conjecture that, due to the structure of T10, no efficient attack exists.
We can, however, attack the rd-indiff security of functor FNewHope, showing that that the security
proof for the base KEM KE1[H2, H3, H4] does not naturally transfer to KE2[V]. Therefore, in order
to generically extend the provable security results for KE1 to KE2, it seems advisable to instead
apply appropriate oracle cloning methods.

2.5 Submissions with provable security but ambiguous specification

In their reference implementations, these submissions use cloning functors which we can and do
validate via our framework, providing provable security in the random oracle model for the final
KEM schemes. However, the submission documents do not clearly specify a secure cloning functor,
meaning that variant implementations or adaptations may unknowingly introduce weaknesses. The

11

schemes BIKE [3], KCL [43], LAC [27], Lizard [15], LOCKER [4], Odd Manhattan [37], ROLLO-II [29],
Round5 [6], SABER [18] and Titanium [42] fall into this group.
Length differentiation. Many of these schemes use the “identity” functor in their reference
implementations, meaning that they set the final functions H1 = H2 = H3 = H4 = F for a single
base function F . If the scheme KE1[H1, H2, H3, H4] never queries two different oracles on inputs
of a single length, the domains of H1, . . . ,H4 are implicitly separated. Reference implementations
typically enforce this separation by fixing the input length of every call to F . Our formalism calls
this query restriction ”length differentiation” and proves its security as an oracle cloning method.
We also generalize it to all methods which prevent the scheme from querying any two distinct
random oracles on a single input.

In the following, we discuss two schemes from the group, ROLLO-II and Lizard, where ambi-
guity about cloning methods between the specification and reference implementation jeopardizes
the security of applications using these schemes. It will be important that, like BIG QUAKE and
RoundTwo, the PKE schemes defined by ROLLO-II and Lizard allow randomness-based decryption.

The scheme ROLLO-II [29] defines its base KEM KE1[H1, H2, H3, H4] using the T9 transform
from Figure 1. The submission document states that H1, H2, H3, and H4 are “typically” instantiated
with a single fixed-length hash function F , but does not describe the cloning functors used to do so.
If the identity functor is used, so that H1 = H2 = H3 = H4 = F , (or more generally, any functor
that sets H2 = H3), an attack is possible. In the transform T9, both H2 and H3 are queried on the
same input M . Then Y = H3(M) = F (M) = H2(M) = R leaks the PKE’s random coins, so the
following attack will allow total key recovery via the randomness-based decryption.

Adversary A[F](pk, C∗) // Input public key and ciphertext, oracle for F
1. C‖Y ← C∗ ; M ← PKE.DecR(pk, C, Y) // (Y = R is the coins)
2. K ← F (M ‖C ‖Y) ; Return K

In the reference implementation of ROLLO-II, however, H2 is instantiated using a second, inde-
pendent function V instead of F , which prevents the above attack. Although the random oracles
H1, H3 and H4 are instantiated using the identity functor, they are never queried on the same
input thanks to length differentiation. As a result, the reference implementation of ROLLO-II is
provably secure, though alternate implementations could be both compliant with the submission
document and completely insecure. The relevant portions of both the specification and the reference
implementation were originally found in the corresponding first-round submission (LOCKER).

Lizard [15] also follows transform T9 to produce its base KEM KE1[H2, H3, H4]. Its submission
document suggests instantiation with a single function F as follows: it sets H3 = H4 = F , and
it sets H2 = W ◦ F for some postprocessing function W whose details are irrelevant here. Since,
in T9, Y = H3(M) = F (M) and R = H2(M) = W ◦ F (M) = W (Y), the randomness R will
again be leaked through Y in the ciphertext, permitting a key-recovery attack using randomness-
based decryption much like the others we have described. This attack is prevented in the reference
implementation of Lizard, which instantiates H3 and H4 using an independent function G. The
domains of H3 and H4 are separated by length differentiation. This allows us to prove the security
of the final KEM KE2[G,F], as defined by the reference implementation.

However, the length differentiation of H3 and H4 breaks down in the chosen-ciphertext-secure
PKE variant specification of Lizard, which transforms KE1. The PKE scheme, given a plaintext
M , computes R = H2(M) and Y = H3(M) according to T9, but it computes K = H4(M), then
includes the value B = K ⊕M as part of the ciphertext C∗. Both the identity functor and the
functor used by the KEM reference implementation set H3 = H4, so the following attack will
extract the plaintext from any ciphertext–

12

Adversary A(pk, C∗) // Input public key and ciphertext
1. C‖B‖Y ← C∗ // Parse C∗ to get Y and B = M ⊕K
2. M ← Y ⊕B ; Return M // Y = H3(M) = H4(M) = K is the mask.

The reference implementation of the public-key encryption schemes prevents the attack by
cloning H3 and H4 from G via a third cloning functor, this one using the output splitting method.
Yet, the inconsistency in the choice of cloning functors between the specification and both im-
plementations underlines that ad-hoc cloning functors may easily “get lost” in modifications or
adaptations of a scheme.

2.6 Submissions with clear provable security

Here we place schemes which explicitly discuss their methods for domain separation and follow
good practice in their implementations: Classic McEliece [12], CRYSTALS-Kyber [5], EMBLEM [40],
FrodoKEM [33], HQC [31], LIMA [41], NTRU-HRSS-KEM [24], NTRU Prime [13], NTS-KEM [1], RQC [30],
SIKE [25] and ThreeBears [22]. These schemes are careful to account for dependencies between
random oracles that are considered to be independent in their security models. When choosing to
clone multiple random oracles from a single primitive, the schemes in this group use padding bytes,
deploy hash functions designed to accommodate domain separation, or restrictions on the length
of the inputs which are codified in the specification. These explicit domain separation techniques
can be cast in the formalism we develop in this work.

HQC and RQC are unique among the PQC KEM schemes in that their specifications warn that
the identity functor admits key-recovery attacks. As protection, they recommend that H2 and H3
be instantiated with unrelated primitives.

Signatures. Although the main focus of this paper is on domain separation in KEMs, we wish to
note that these issues are not unique to KEMs. At least one digital signature scheme in the second
round of the NIST PQC competition, MQDSS [14], models multiple hash functions as independent
random oracles in its security proof, then clones them from the same primitive without explicit
domain separation. We have not analyzed the NIST PQC digital signature schemes’ security to
see whether more subtle domain separation is present, or whether oracle collisions admit the same
vulnerabilities to signature forgery as they do to session key recovery. This does, however, highlight
that the problem of random oracle cloning is pervasive among more types of cryptographic schemes.

3 Preliminaries

Basic notation. By [i..j] we abbreviate the set {i, . . . , j}, for integers i ≤ j. If x is a vector then
|x| is its length (the number of its coordinates), x[i] is its i-th coordinate and [x] = {x[i] : i ∈
[1..|x|]} is the set of its coordinates. The empty vector is denoted (). If S is a set, then S∗ is the set
of vectors over S, meaning the set of vectors of any (finite) length with coordinates in S. Strings
are identified with vectors over {0, 1}, so that if x ∈ {0, 1}∗ is a string then |x| is its length, x[i] is
its i-th bit, and x[i..j] is the substring from its i-th to its j-th bit (including), for i ≤ j. The empty
string is ε. If x, y are strings then we write x � y to indicate that x is a prefix of y. If S is a finite
set then |S| is its size (cardinality). A set S ⊆ {0, 1}∗ is length closed if {0, 1}|x| ⊆ S for all x ∈ S.

We let y ← A[O1, . . .](x1, . . . ; r) denote executing algorithm A on inputs x1, . . . and coins r, with
access to oracles O1, . . ., and letting y be the result. We let y←$A[O1, . . .](x1, . . .) be the resulting
of picking r at random and letting y ← A[O1, . . .](x1, . . . ; r). We let OUT(A[O1, . . .](x1, . . .)) denote
the set of all possible outputs of algorithm A when invoked with inputs x1, . . . and access to oracles

13

O1, Algorithms are randomized unless otherwise indicated. Running time is worst case. An
adversary is an algorithm.

We use the code-based game-playing framework of [11]. A game G (see Figure 2 for an example)
starts with an init procedure, followed by a non-negative number of additional procedures, and
ends with a fin procedure. Procedures are also called oracles. Execution of adversary A with
game G consists of running A with oracle access to the game procedures, with the restrictions that
A’s first call must be to init, its last call must be to fin, and it can call these two procedures
at most once. The output of the execution is the output of fin. We write Pr[G(A)] to denote
the probability that the execution of game G with adversary A results in the output being the
boolean true. Note that our adversaries have no output. The role of what in other treatments is
the adversary output is, for us, played by the query to fin. We adopt the convention that the
running time of an adversary is the worst-case time to execute the game with the adversary, so the
time taken by game procedures (oracles) to respond to queries is included.
Functions. As usual g: D → R indicates that g is a function taking inputs in the domain set
D and returning outputs in the range set R. We may denote these sets by Dom(g) and Rng(g),
respectively.

We say that g: Dom(g)→ Rng(g) has output length ` if Rng(g) = {0, 1}`. We say that g is a
single output-length (sol) function if there is some ` such that g has output length ` and also the
set D is length closed. We let SOL(D, `) denote the set of all sol functions g: D → {0, 1}`.

We say g is an extendable output length (xol) function if the following are true: (1) Rng(g) =
{0, 1}∗ (2) there is a length-closed set Dom∗(g) such that Dom(g) = Dom∗(g)× N (3) |g(x, `)| = `
for all (x, `) ∈ Dom(g), and (4) g(x, `) � g(x, `′) whenever ` ≤ `′. We let XOL(D) denote the set
of all xol functions g: D → {0, 1}∗.

4 Read-only indifferentiability of translating functors

We define read-only indifferentiability (rd-indff) of functors. Then we define a class of functors
called translating, and give general results about their rd-indiff security. Later we will apply this to
analyze the security of cloning functors, but the treatment in this section is broader and, looking
ahead to possible future applications, more general than we need for ours.

4.1 Functors and read-only indifferentiability

A random oracle, formally, is a function drawn at random from a certain space of functions. A
construction (functor) is a mapping from one such space to another. We start with definitions for
these.
Function spaces and functors. A function space FS is simply a set of functions, with the
requirement that all functions in the set have the same domain Dom(FS) and the same range
Rng(FS). Examples are SOL(D, `) and XOL(D). Now f←$ FS means we pick a function uniformly
at random from the set FS.

Sometimes (but not always) we want an extra condition called input independence. It asks
that the values of f on different inputs are identically and independently distributed when f←$ FS.
More formally, let D be a set and let Out be a function that associates to any W ∈ D a set Out(W).
Let Out(D) be the union of the sets Out(W) as W ranges over D. Let FUNC(D,Out) be the set of
all functions f : D → Out(D) such that f(W) ∈ Out(W) for all W ∈ D. We say that FS provides
input independence if there exists such a Out such that FS = FUNC(Dom(FS),Out). Put another
way, there is a bijection between FS and the set S that is the cross product of the sets Out(W)

14

Game Grd-indiff
F,SS,ES,W,S

init:
1 s←$ SS
2 e1 ← F[s] ; e0←$ ES
3 b←$ {0, 1}
4 st←$ S.Setup()

priv(W):
5 If W ∈ W then return eb(W)
6 Else return ⊥

pub(U):
7 if (b = 1) then return s(U)
8 else return S.Ev[e0](st, U)

fin(b′):
9 return (b = b′)

Figure 2: Game defining read-only indifferentiability.

as W ranges over Dom(FS). (Members of S are |Dom(FS)|-vectors.) As an example the function
space SOL(D, `) satisfies input independence, but XOL(D) does not satisfy input independence.

Let SS be a function space that we call the starting space. Let ES be another function space
that we call the ending space. We imagine that we are given a function s ∈ SS and want to
construct a function e ∈ ES. We refer to the object doing this as a functor. Formally a functor is
a deterministic algorithm F that, given as oracle a function s ∈ SS, returns a function F[s] ∈ ES.
We write F: SS→ ES to emphasize the starting and ending spaces of functor F.
Rd-indiff. We want the ending function to “emulate” a random function from ES. Indifferentia-
bility is a way of defining what this means. The original definition of MRH [28] has been followed
by many variants [16, 38, 19, 32]. Here we give ours, called read-only indifferentiability, which
implies composition not just for single-stage games, but even for multi-stage ones [38, 19, 32].

Let ES and SS be function spaces, and let F: SS→ ES be a functor. Our variant of indifferentia-
bility mandates a particular, strong simulator, which can read, but not write, its (game-maintained)
state, so that this state is a static quantity. Formally a read-only simulator S for F specifies a setup
algorithm S.Setup which outputs the state, and a deterministic evaluation algorithm S.Ev that,
given as oracle a function e ∈ ES, and given a string st ∈ OUT(S.Setup) (the read-only state),
defines a function S.Ev[e](st, ·): Dom(SS)→ Rng(SS).

The intent is that S.Ev[e](st, ·) play the role of a starting function s ∈ SS satisfying F[s] = e.
To formalize this, consider the read-only indifferentiability game Grd-indiff

F,SS,ES,W,S of Figure 2, where
W ⊆ Dom(ES) is called the working domain. The adversary A playing this game is called a
distinguisher. Its advantage is defined as

Advrd-indiff
F,SS,ES,W,S(A) = 2 · Pr

[
Grd-indiff

F,SS,ES,W,S(A)
]
− 1.

To explain, in the game, b is a challenge bit that the distinguisher is trying to determine. Function
eb is a random member of the ending space ES if b = 0 and is F[s](·) if b = 1. The query W to
oracle priv is required to be in Dom(ES). The oracle returns the value of eb on W , but only if
W is in the working domain, otherwise returning ⊥. The query U to oracle pub is required to
be in Dom(SS). The oracle returns the value of s on U in the b = 1 case, but when b = 0, the
simulator evaluation algorithm S.Ev must answer the query with access to an oracle for e0. The
distinguisher ends by calling fin with its guess b′ ∈ {0, 1} of b and the game returns true if b′ = b
(the distinguisher’s guess is correct) and false otherwise.

The working domainW ⊆ Dom(ES), a parameter of the definition, is included as a way to allow
the notion of read-only indifferentiability to provide results for oracle cloning methods like length
differentiation whose security depends on domain restrictions.

The S.Ev algorithm is given direct access to e0, rather than access to priv as in other definitions,
to bypass the working domain restriction, meaning it may query e0 at points in Dom(ES) that are

15

outside the working domain.
All invocations of S.Ev[e0] are given the same (static, game-maintained) state st as input, but

S.Ev[e0] cannot modify this state, which is why it is called read-only. Note init does not return
st, meaning the state is not given to the distinguisher.
Discussion. To compare rd-indiff to other indiff notions, we set W = Dom(ES), because prior
notions do not include working domains. Now, rd-indiff differs from prior indiff notions because
it requires that the simulator state be just the immutable string chosen at the start of the game.
In this regard, rd-indiff falls somewhere between the original MRH-indiff [28] and reset indiff [38]
in the sense that our simulator is more restricted than in the first and less than in the second.
A construction (functor) that is reset-indiff is thus rd-indiff, but not necessarily vice-versa, and a
construct that is rd-indiff is MRH-indiff, but not necessarily vice-versa. Put another way, the class
of rd-indff functors is larger than the class of reset-indiff ones, but smaller than the class of MRH-
indiff ones. Now, RSS’s proof [38] that reset-indiff implies security for multi-stage games extends
to rd-indiff, so we get this for a potentially larger class of functors. This larger class includes some
of the cloning functors we have described, which are not necessarily reset-indiff.

4.2 Translating functors

Translating functors. We focus on a class of functors that we call translating. This class
includes natural and existing oracle cloning methods, in particular all the effective methods used
by NIST KEMs, and we will be able to prove general results for translating functors that can be
applied to the cloning methods.

A translating functor T: SS → ES is a functor that, with oracle access to s and on input
W ∈ Dom(ES), non-adaptively calls s on a fixed number of inputs, and computes its output
T[s](W) from the responses and W . Its operation can be split into three phases which do not share
state: (1) a pre-processing phase which chooses the inputs to s based on W alone (2) the calls to s
to obtain responses (3) a post-processing phase which uses W and the responses collected in phase
2 to compute the final output value T[s](W).

Proceeding to the definitions, let SS,ES be function spaces. A (SS,ES)-query translator is a
function (deterministic algorithm) QT: Dom(ES)→ Dom(SS)∗, meaning it takes a point W in the
domain of the ending space and returns a vector of points in the domain of the starting space. This
models the pre-processing. A (SS,ES)-answer translator is a function (deterministic algorithm)
AT: Dom(ES)× Rng(SS)∗ → Rng(ES), meaning it takes the original W , and a vector of points in
the range of the starting space, to return a point in the range of the ending space. This models
the post-processing. To the pair (QT,AT), we associate the functor TFQT,AT: SS→ ES, defined as
follows:

Algorithm TFQT,AT[s](W) // Input W ∈ Dom(ES) and oracle s ∈ SS
U ← QT(W)
For j = 1, . . . , |U | do V [j]← s(U [j]) // U [j] ∈ Dom(SS)
Y ← AT(W,V) ; Return Y

The above-mentioned calls of phase (2) are done in the second line of the code above, so that this
implements a translating functor as we described. Formally we say that a functor F: SS → ES is
translating if there exists a (SS,ES)-query translator QT and a (SS,ES)-answer translator AT such
that F = TFQT,AT.
Inverses. So far, query and answer translators may have just seemed an unduly complex way to say
that a translating oracle construction is one that makes non-adaptive oracle queries. The purpose

16

Game Gti
SS,ES,QTI,ATI

init:
1 b←$ {0, 1} ; e←$ ES
2 s1←$ SS ; s0 ← P[e]QTI,ATI

pub(U): // U ∈ Dom(SS)
3 If QTI(U) = () then return ⊥
4 return sb(U)

fin(b′):
5 return (b = b′)

Figure 3: Game defining translation indistinguishability.

of making the query and answer translators explicit is to define invertibility, which determines
rd-indiff security.

Let SS and ES be function spaces. Let QTI be a function (deterministic algorithm) that takes
an input U ∈ Dom(SS) and returns a vector W over Dom(ES). We allow QTI to return the empty
vector (), which is taken as an indication of failure to invert. Define the support of QTI, denoted
sup(QTI), to be the set of all U ∈ Dom(SS) such that QTI(U) 6= (). Say that QTI has full support
if sup(QTI) = Dom(SS), meaning there is no U ∈ Dom(SS) such that QTI(U) = (). Let ATI be a
function (deterministic algorithm) that takes U ∈ Dom(SS) and a vector Y over Rng(ES) to return
an output in Rng(SS). Given a function e ∈ ES, we define the function P[e]QTI,ATI: Dom(SS) →
Rng(SS) by

Function P[e]QTI,ATI(U) // U ∈ Dom(SS)
W ← QTI(U) ; Y ← e(W) ; V ← ATI(U,Y) ; Return V

Above, e is applied to a vector component-wise, meaning e(W) is defined as the vector (e(W [1]),
. . . , e(W [|W |])).

We require that the function P[e]QTI,ATI belong to the starting space SS. Now let QT be a
(SS,ES)-query translator and AT a (SS,ES)-answer translator. Let W ⊆ Dom(ES) be a working
domain. We say that QTI,ATI are inverses of QT,AT over W if two conditions are true. The first
is that for all e ∈ ES and all W ∈ W we have

TFQT,AT[P[e]QTI,ATI](W) = e(W) . (2)
This equation needs some parsing. Fix a function e ∈ ES in the ending space. Then s = P[e]QTI,ATI
is in SS. Recall that the functor F = TFQT,AT takes a function s in the starting space as an oracle
and defines a function e′ = F[s] in the ending space. Equation (2) is asking that e′ is identical to
the original function e, on the working domain W. The second condition (for invertibility) is that
if U ∈ {QT(W)[i] : W ∈ W} —that is, U is an entry of the vector U returned by QT on some
input W— then QTI(U) 6= (). Note that if QTI has full support then this condition is already true,
but otherwise it is an additional requirement.

We say that (QT,AT) is invertible overW if there exist QTI,ATI such that QTI,ATI are inverses
of QT,AT over W, and we say that a translating functor TFQT,AT is invertible over W if (QT,AT)
is invertible over W.

In the rd-indiff context, function P[e]QTI,ATI will be used by the simulator. Roughly, we try to set
S.Ev[e](st, U) = P[e]QTI,ATI(U). But we will only be able to successfully do this for U ∈ sup(QTI).
The state st is used by S.Ev to provide replies when U 6∈ sup(QTI).

17

Algorithm S.Setup:
1 Return ε

Algorithm S.Ev[e](st, U):
1 W ← QTI(U) ; Y ← e(W) ; V ← ATI(U,Y)
2 Return V

Algorithm S.Setup:
1 st←$ {0, 1}G.kl

2 Return st

Algorithm S.Ev[e](st, U):
1 W ← QTI(U)
2 If W = () then return Gst[e](U)
3 Y ← e(W) ; V ← ATI(U,Y)
4 Return V

Figure 4: Simulators for Theorem 4.1 (top) and Theorem 4.2 (bottom).

Equation (2) is a correctness condition. There is also a security metric. Consider the translation
indistinguishability game Gti

SS,ES,QTI,ATI of Figure 3. Define the ti-advantage of adversary B via

Advti
SS,ES,QTI,ATI(B) = 2 · Pr

[
Gti

SS,ES,QTI,ATI(B)
]
− 1.

In reading the game, recall that () is the empty vector, whose return by QTI represents an inversion
error. TI-security is thus asking that if e is randomly chosen from the ending space, then the output
of P[e]QTI,ATI on an input U is distributed like the output on U of a random function in the starting
space, but only as long as QTI(U) was non-empty. We will see that the latter restriction creates some
challenges in simulation whose resolution exploits using read-only state. We say that (QTI,ATI)
provides perfect translation indistinguishability if Advti

SS,ES,QTI,ATI(B) = 0 for all B, regardless of
the running time of B.

Additionally we of course ask that the functions QT,AT,QTI,ATI all be efficiently computable.
In an asymptotic setting, this means they are polynomial time. In our concrete setting, they
show up in the running-time of the simulator or constructed adversaries. (The latter, as per our
conventions, being the time for the execution of the adversary with the overlying game.)

4.3 Rd-indiff of translating functors

We now move on to showing that invertibility of a pair (QT,AT) implies rd-indifferentiability of
the translating functor TFQT,AT. We start with the case that QTI has full support.

Theorem 4.1 Let SS and ES be function spaces. Let W be a subset of Dom(ES). Let QT,AT be
(SS,ES) query and answer translators, respectively. Let QTI,ATI be inverses of QT,AT over W.
Assume QTI has full support. Define read-only simulator S as per the top panel of Figure 4. Let
F = TFQT,AT. Let A be any distinguisher. Then we construct a ti-adversary B such that

Advrd-indiff
F,SS,ES,W,S(A) ≤ Advti

SS,ES,QTI,ATI(B) .
Let ` be the maximum output length of QT. If A makes qpriv, qpub queries to its priv,pub oracles,
respectively, then B makes ` · qpriv + qpub queries to its pub oracle. The running time of B is about
that of A.

Proof of Theorem 4.1: Consider the games of Figure 5. In the left panel, line 1 is included only
in G0 and line 2 only in G1, and this is the only way the games differ. Game G0 is the real game,
meaning the case b = 1 in game Grd-indiff

F,SS,ES,W,S. In game G2, oracle priv is switched to a random
function e0. From the description of the simulator in Figure 4 we see that

S.Ev[e0](ε, U) = P[e0]QTI,ATI(U)

18

Games G0, G1

init:
1 s←$ SS // Game G0

2 e0←$ ES ; s← P[e0]QTI,ATI // Game G1

priv(W):
3 If W ∈ W then return F[s](W)
4 Else return ⊥

pub(U):
5 return s(U)

fin(b′):
6 return (b′ = 1)

Game G2

init:
1 e0←$ ES
2 s← P[e0]QTI,ATI

priv(W):
3 If W ∈ W then return e0(W)
4 Else return ⊥

pub(U):
5 return s(U)

fin(b′):
6 return (b′ = 1)

Adversary B:
1 init()
2 A[init′, pub′, priv′, fin′]()

init′:
3 Return

pub′(U):
4 return pub(U)

priv′(W):
5 if W 6∈ W then return ⊥
6 U ← QT(W)
7 For j = 1, . . . , |U | do V [j]← pub(U [j])
8 return AT(W,V)

fin′(b′):
9 fin(b′)

Figure 5: Top: Games for proof of Theorem 4.1. Bottom: Adversary for proof of Theorem 4.1.

for all U ∈ Dom(SS) and all e0 ∈ ES, so that oracle pub in game G2 is responding according to the
simulator based on e0. So game G2 is the case b = 0 in game Grd-indiff

F,SS,ES,W,S. Thus

Advrd-indiff
F,SS,ES,W,S(A) = Pr[G0(A)]− Pr[G2(A)]

= (Pr[G0(A)]− Pr[G1(A)]) + (Pr[G1(A)]− Pr[G2(A)]) .
We define translation-indistinguishability adversary B in Figure 5 so that

Pr[G0(A)]− Pr[G1(A)] ≤ Advti
SS,ES,QTI,ATI(B) .

Adversary B is playing game Gti
SS,ES,QTI,ATI. Using its pub oracle, it presents the interface of G0 and

G1 to A. In order to simulate the priv oracle, B runs TFQT,AT[pub]. This is consistent with G0
and G1. If b = 1 in Gti

SS,ES,QTI,ATI, then B perfectly simulates G0 for A. If b = 1, then B correctly
simulates G1 for A. To complete the proof we claim that

Pr[G1(A)] = Pr[G2(A)] .
This is true by the correctness condition. The latter says that if s← P[e0]QTI,ATI then F[s] is just
e0 itself. So e1 in game G1 is the same as e0 in game G2, making their priv oracles identical. And
their pub oracles are identical by definition.

The simulator in Theorem 4.1 is stateless, so when W is chosen to be Dom(ES) the theorem is
establishing reset indifferentiability [38] of F.

For translating functors where QTI does not have full support, we need an auxiliary primitive
that we call a (SS,ES)-oracle aided PRF. Given an oracle for a function e ∈ ES, an (SS,ES)-oracle
aided PRF G defines a function G[e]: {0, 1}G.kl × Dom(SS) → Rng(SS). The first input is a key.
For C an adversary, let Advprf

G,SS,ES(C) = 2 Pr[Gprf
G,SS,ES(C)]− 1, where the game is in Figure 6. The

19

Gprf
G,SS,ES

init():
1 b←$ {0, 1}
2 e←$ ES
3 st←$ {0, 1}G.kl

4 s1 ← G[e](st, ·)
5 s0←$ SS

RO(W):
6 Return e(W)

FnO(U):
7 V ← sb(U)
8 Return V

fin(b′):
9 Return (b′ = b)

Figure 6: Game to define PRF security of (SS,ES)-oracle aided PRF G.

simulator uses its read-only state to store a key st for G, then using G(st, ·) to answer queries
outside the support sup(QTI).

We introduce this primitive because it allows multiple instantiations. The simplest is that it
is a PRF, which happens when it does not use its oracle. In that case the simulator is using a
computational primitive (a PRF) in the indifferentiability context, which seems novel. Another
instantiation prefixes st to the input and then invokes e to return the output. This works for
certain choices of ES, but not always. Note G is used only by the simulator and plays no role in
the functor.

Theorem 4.2 Let SS and ES be function spaces, and assume they provide input independence. Let
W be a subset of Dom(ES). Let QT,AT be (SS,ES) query and answer translators, respectively. Let
QTI,ATI be inverses of QT,AT over W. Define read-only simulator S as per the bottom panel of
Figure 4. Let F = TFQT,AT. Let A be any distinguisher. Then we construct a ti-adversary B and
a prf-adversary C such that

Advrd-indiff
F,SS,ES,W,S(A) ≤ Advti

SS,ES,QTI,ATI(B) + Advprf
G,SS(C) .

Let ` be the maximum output length of QT and `′ the maximum output length of QTI. If A makes
qpriv, qpub queries to its priv,pub oracles, respectively, then B makes ` · qpriv + qpub queries to its
pub oracle and C makes at most ` ·`′ ·qpriv+qpub queries to its RO oracle and at most qpub+` ·qpriv
queries to its FnO oracle. The running times of B, C are about that of A.

Proof of Theorem 4.2: We will rely on the sequence of games in Figure 7. The first game G0
is the real game, meaning the case b = 1 in game Grd-indiff

F,SS,ES,W,S. Game G1 differs from G0 because
it samples an additional function s2 from the starting space. When an inversion error occurs in
the pub oracle, game G1 answers using s2 instead of s1. Since the starting space SS provides input
independence, both s1 and s2 are drawn from FUNC(Dom(SS),Out) for some Out. Then on any
input U , the outputs of s1 and s2 are identically and independently distributed. The adversary
can therefore only tell that queries outside the support of QTI are not being answered by s1 if the
pub oracle becomes inconsistent with the priv oracle. This happens only if the priv oracle, while
computing F[s1] = TFQT,AT[s1], queries s1 on some point outside the support of QTI, which is
impossible by the first condition in the definition of invertibility. Hence

Pr[G0(A)] = Pr[G1(A)].
Between games G1 and G2, we draw a function e0 from the ending space and replace s1 with
PQTI,ATI[e0]. We construct the translation-indistinguishability adversary B in Figure 7 so that

Pr[G1(A)]− Pr[G2(A)] ≤ Advti
SS,ES,QTI,ATI(B).

This adversary simulates the interface of G1 and G2 for A, using its pub oracle to implement s1
and check for inversion errors. It lazily samples s2, which is consistent with G1 and G2 by the input

20

Games G0, G1

init:
1 s1←$ SS
2 s2←$ SS // Game G1

3 e1 ← F[s1]

priv(W):
4 If W ∈ W then return e1(W)
5 Else return ⊥

pub(U):
6 if QTI(U) = () then
7 return s2(U) // Game G1

8 return s1(U)

fin(b′):
9 return (b′ = 1)

Game G2,G3

init:
1 e0←$ ES
2 s1 ← P[e0]QTI,ATI

3 s2←$ SS // Game G2

4 e1 ← F[s1]
5 st←$ S.Setup() // Game G3

priv(W):
6 If W ∈ W then return e1(W)
7 Else return ⊥

pub(U):
8 if QTI(U) = () then
9 return s2(U) // Game G2

10 return Gst[e0](U) // Game G3

11 return s1(U)

fin(b′):
12 return (b′ = 1)

Game G4

init:
1 e0←$ ES
2 s1 ← P[e0]QTI,ATI

3 st←$ S.Setup()

priv(W):
4 If W ∈ W then return e0(W)
5 Else return ⊥

pub(U):
6 if QTI(U) = () then
7 return G[e0]st(U)
8 return s1(U)

fin(b′):
9 return (b′ = 1)

Figure 7: Games for proof of Theorem 4.2.

independence of SS. Its priv′ oracle runs F[pub], which is consistent. When the challenge bit
b = 1 in game Gti

SS,ES,QTI,ATI, adversary B simulates game G1 perfectly, and when b = 0 it perfectly
simulates game G2.

In game G3, we replace s2 with an (SS,ES)-oracle-aided pseudorandom function G and sample a
PRF key st in the init oracle. We construct an adversary C in Figure 7 against the PRF-security
of G. This adversary plays game Gprf

SS,ES,G and simulates the interface of games G2 and G3 for A.
It uses its RO oracle to simulate e0, and it uses its FnO oracle to answer pub queries outside the
support of QTI. When b = 0 in game Gprf

SS,ES,G, the adversary perfectly simulates G2 for A, and
when b = 1 it perfectly simulates G3. Therefore

Pr[G2(A)]− Pr[G3(A)] ≤ Advprf
SS,ES,G(C).

In Game G4, we answer priv queries with e0 directly, instead of with F[PQTI,ATI[e0]]. By the
correctness condition of invertibility, these two functions are identical, so

Pr[G3(A)] = Pr[G4(A)].

Looking at the pseudocode for simulator S in the bottom panel of Figure 4, we see that S.Ev[e] first
runs QTI on its input U . If QTI(U) = (), then it returns Gst[e](U). Otherwise, it runs P[e]QTI,ATI(U)
and returns the output. This is identical to lines 6-8 of game G4, so A wins G4 if and only if it

21

Adversary B:
1 init()
2 A[init′, pub′, priv′, fin′]()

init′:
3 Return

pub′(U):
4 if T [U] 6= ⊥ then return T [U]
5 W ← pub(U)
6 if W = ⊥ then
7 (i, X)← U

8 T [U]←$ Out(U)
9 W ← T [U]

10 return W

priv′(W):
11 if W ∈ W then return F[pub](W)
12 Else return ⊥

fin′(b′):
13 fin(b′)

Adversary C:
1 init()
2 A[init′, pub′, priv′, fin′]()

init′:
3 Return

pub′(U):
4 if QTI(U) = () then
5 return FnO(U)
6 return P[RO]QTI,ATI(U)

priv′(W):
7 If W ∈ W then
8 return F[pub′](W)
9 Else return ⊥

fin′(b′):
10 fin(b′)

Figure 8: Adversaries for proof of Theorem 4.2.

loses the ideal game (meaning the case b = 0), of the rd-indiff game Grd−indiff
F,SS,ES,W,S. Thus

Advreset-indiff
F,SS,ES,W,S(A) = Pr[G0(A)]− Pr[G4(A)

= Pr[G1(A)]− Pr[G3(A)]

= (Pr[G1(A)]− Pr[G2(A)]) + (Pr[G2(A)]− Pr[G3(A))]

≤ Advti
SS,ES,QTI,ATI(B) + Advprf

SS,ES,G(C).
This completes the proof.

5 Analysis of cloning functors

Section 4 defined the rd-indiff metric of security for functors and give a framework to prove rd-
indiff of translating functors. We now apply this to derive security results about particular, practical
cloning functors.

Arity-n function spaces. The cloning functors apply to function spaces where a function spec-
ifies sub-functions, corresponding to the different random oracles we are trying to build. Formally,
a function space FS is said to have arity n if its members are two-argument functions f whose first
argument is an integer i ∈ [1..n]. For i ∈ [1..n] we let fi = f(i, ·) and FSi = {fi : f ∈ FS}, and
refer to the latter as the i-th subspace of FS. We let Domi(FS) be the set of all X such that (i,X)
∈ Dom(FS).

We say that FS has sol subspaces if FSi is a set of sol functions with domain Domi(FS),
for all i ∈ [1..n]. More precisely, there must be integers OL1(FS), . . . ,OLn(FS) such that FSi =
SOL(Domi(FS),OLi(FS)) for all i ∈ [1..n]. In this case, we let Rngi(FS) = {0, 1}OLi(FS). This is the
most common case for practical uses of ROs.

22

To explain, access to n random oracles is modeled as access to a two-argument function f drawn
at random from FS, written f←$ FS. If FS has sol subspaces, then for each i, the function fi is
a sol function, with a certain domain and output length depending only on i. All such functions
are included. This ensures input independence as we defined it earlier. Thus if f←$ FS, then for
each i and any distinct inputs to fi, the outputs are independently distributed. Also functions
f1, . . . , fn are independently distributed when f←$ FS. Put another way, we can identify FS with
FS1 × · · · × FSn.

Domain-separating functors. We can now formalize the domain separation method by seeing
it as defining a certain type of (translating) functor.

Let the ending space ES be an arity n function space. Let F: SS→ ES be a translating functor
and QT,AT be its query and answer translations, respectively. Assume QT returns a vector of
length 1 and that AT((i,X),V) simply returns V [1]. We say that F is domain separating if the
following is true: QT(i1, X1) 6= QT(i2, X2) for any (i1, X1), (i2, X2) ∈ Dom(ES) that satisfy i1 6= i2.

To explain, recall that the ending function is obtained as e ← F[s], and defines ei for i ∈
[1..n]. Function ei takes input X, lets (u) ← QT(i,X) and returns s(u). The domain separation
requirement is that if (ui)← QT(i,Xi) and (uj)← QT(j,Xj), then i 6= j implies ui 6= uj , regardless
of Xi, Xj . Thus if i 6= j then the inputs to which s is applied are always different. The domain of
s has been “separated” into disjoint subsets, one for each i.

Practical cloning functors. We show that many popular methods for oracle cloning in
practice, including ones used in NIST KEM submissions, can be cast as translating functors.

In the following, the starting space SS = SOL({0, 1}∗,OL(SS)) is assumed to be a sol function
space with domain {0, 1}∗ and an output length denoted OL(SS). The ending space ES is an arity
n function spaces that has sol subspaces.

Prefixing. Here we formalize the canonical method of domain separation. Prefixing is used
in the following NIST PQC submissions: ClassicMcEliece, FrodoKEM, LIMA, NTRU Prime, SIKE,
QC-MDPC, ThreeBears.

Let p be a vector of strings. We require that it be prefix-free, by which we mean that i 6= j
implies that p[i] is not a prefix of p[j]. Entries of this vector will be used as prefixes to enforce
domain separation. One example is that the entries of p are distinct strings all of the same length.
Another is that a p[i] = E(i) for some prefix-free code E like a Huffman code.

Assume OLi(ES) = OL(SS) for all i ∈ [1..n], meaning all ending functions have the same output
length as the starting function. The functor Fpf(p): SS → ES corresponding to p is defined by
Fpf(p)[s](i,X) = s(p[i]‖X). To explain, recall that the ending function is obtained as e← Fpf(p)[s],
and defines ei for i ∈ [1..n]. Function ei takes input X, prefixes p[i] to X to get a string X ′, applies
the starting function s to X ′ to get Y , and returns Y as the value of ei(X).

We claim that Fpf(p) is a translating functor that is also a domain-separating functor as per
the definitions above. To see this, define query translator QTpf(p) by QTpf(p)(i,X) = (p[i]‖X),
the 1-vector whose sole entry is p[i]‖X. The answer translator ATpf(p), on input (i,X),V , returns
V [1], meaning it ignores i,X and returns the sole entry in its 1-vector V .

We proceed to the inverses, which are defined as follows:

Algorithm QTIpf(p)(U)
W ← ()
For i = 1, . . . , n do

If p[i] � U then p[i]‖X ← U ; W [1]← (i,X)
Return W

Algorithm ATIpf(p)(U,Y)
If Y 6= () then V ← Y [1]
Else V ← 0OL(SS)

Return V

23

The working domain is the full one: W = Dom(ES). We now verify Equation (2). Let QT,QTI,AT,ATI
be QTpf(p),QTIpf(p),ATpf(p),ATIpf(p), respectively. Then for all W = (i,X) ∈ Dom(ES), we have:

TFQT,AT[P[e]QTI,ATI](W) = P[e]QTI,ATI(p[i]‖X)

= ATI(p[i]‖X, (e(i,X)))

= e(i,X) .
We observe that (QTIpf(p),ATIpf(p)) provides perfect translation indistinguishability. Since QTIpf(p)
does not have full support, we can’t use Theorem 4.1, but we can conclude rd-indiff via Theorem 4.2.

Identity. Many NIST PQC submissions simply let ei(X) = s(X), meaning the ending functions
are identical to the starting one. This is captured by the identity functor Fid: SS → ES, defined
by Fid[s](i,X) = s(X). This again assumes OLi(ES) = OL(SS) for all i ∈ [1..n], meaning all
ending functions have the same output length as the starting function. This functor is translating,
via QTid(i,X) = X and ATid((i,X),V) = V [1]. It is however not, at least in general, domain
separating.

Clearly, this functor is not, in general, rd-indiff. To make secure use of it nonetheless, ap-
plications can restrict the inputs to the ending functions to enforce a virtual domain separation,
meaning, for i 6= j, the schemes never query ei and ej on the same input. One way to do this
is length differentiation. Here, for i ∈ [1..n], the inputs to which ei is applied all have the same
length li, and l1, . . . , ln are distinct. Length differentiation is used in the following NIST PQC sub-
missions: BIKE,EMBLEM, HQC, RQC, LAC, LOCKER, NTS-KEM, SABER, Round2, Round5,Titanium. There
are, of course, many other similar ways to enforce the virtual domain separation.

There are two ways one might capture this with regard to security. One is to restrict the domain
Dom(ES) of the ending space. For example, for length differentiation, we would require that there
exist distinct l1, . . . , ln such that for all (i,X) ∈ Dom(ES) we have |X| = li. For such an ending
space, the identity functor would provide security. The approach we take is different. We don’t
restrict the domain of the ending space, but instead define security with respect to a subdomain,
which we called the working domain, where the restriction is captured. This, we believe, is better
suited for practice, for a few reasons. One is that a single implementation of the ending functions
can be used securely in different applications that each have their own working domain. Another is
that implementations of the ending functions do not appear to enforce any restrictions, leaving it
up to applications to figure out how to securely use the functions. In this context, highlighting the
working domain may help application designers think about what is the working domain in their
application and make this explicit, which can reduce error.

But we warn that the identity functor approach is more prone to misuse and in the end more
dangerous and brittle than some others.

As per the above, inverses can only be given for certain working domains. Let us say that
W ⊆ Dom(ES) separates domains if for all (i1, X1), (i2, X2) ∈ W satisfying i1 6= i2, we have
X1 6= X2. Put another way, for any (i,X) ∈ W there is at most one j such that X ∈ Domj(ES). We
assume an efficient inverter forW. This is a deterministic algorithm InW that on input X ∈ {0, 1}∗
returns the unique i such that (i,X) ∈ W if such an i exists, and otherwise returns ⊥. (The
uniqueness is by the assumption that W separates domains.)

As an example, for length differentiation, we pick some distinct integers l1, . . . , ln such that
{0, 1}li ⊆ Domi(ES) for all i ∈ [1..n]. We then let W = {(i,X) ∈ Dom(ES) : |X| = li}. This
separates domains. Now we can define InW(X) to return the unique i such that |X| = li if
|X| ∈ {l1, . . . , ln}, otherwise returning ⊥.

The inverses are then defined using InW , as follows, where U ∈ Dom(SS) = {0, 1}∗:

24

Adversary Ainit,pub,priv,fin

init()
y ← pub(0) ; d←$ {1, 2} ; yd ← priv(d, 0)
If (yd[1..256]) = y[1..256] then fin(1) else fin(0)

Figure 9: Adversary against the rd-indiff security of FNewHope.

Algorithm QTIid(U)
W ← () ; i← InW(U)
If i 6= ⊥ then W [1]← (i, U)
Return W

Algorithm ATIid(U,Y)
If Y 6= () then V ← Y [1]
Else V ← 0OL(SS)

Return V

The correctness condition of Equation (2) over W is met, and since InW(X) never returns ⊥ for
X ∈ W, the second condition of invertibility is also met. (QTIid,ATIid) provides perfect translation
indistinguishability. Since QTIid does not have full support, we can’t use Theorem 4.1, but we can
conclude rd-indiff via Theorem 4.2.

Output-splitting. We formalize another method that we call output splitting. It is used in the
following NIST PQC submissions: FrodoKEM, NTRU-HRSS-KEM, Odd Manhattan,QC-MDPC, Round2,
Round5.

Let `i = OL1(ES) + · · · + OLi(ES) for i ∈ [1..n]. Let ` = OL(SS) be the output length of
the sol functions s ∈ SS, and assume ` = `n. The output-splitting functor Fspl: SS → ES is
defined by Fspl[s](i,X) = s(X)[`i−1+1..`i]. That is, if e← Fspl[s], then ei(X) lets Z ← s(X) and
then returns bits `i−1 +1 through `i of Z. This functor is translating, via QTspl(i,X) = X and
ATspl((i,X),V) = V [1][`i−1+1..`i]. It is however not domain separating.

The inverses are defined as follows, where U ∈ Dom(SS) = {0, 1}∗:

Algorithm QTIspl(U)
For i = 1, . . . , n do W [i]← (i, U)
Return W

Algorithm ATIspl(U,Y)
V ← Y [1]‖ · · · ‖Y [n]
Return V

The correctness condition of Equation (2) over W = ES is met, and (QTIspl,ATIspl) provides
perfect translation indistinguishability. Since QTIspl has full support, we can conclude rd-indiff via
Theorem 4.1.

Rd-indiff of NewHope. We next demonstrate how read-only indifferentiability can highlight sub-
par methods of oracle cloning, using the example of NewHope [2]. The base KEM KE1 defined
in the specification of NewHope relies on just two random oracles, G and H4. (The base scheme
defined by transform T10, which uses 3 random oracles H2, H3, and H4, is equivalent to KE1 and
can be obtained by applying the output-splitting cloning functor to instantiate H2 and H3 with G.
NewHope’s security proof explicitly claims this equivalence [2].)

The final KEM KE2 instantiates these two functions through SHAKE256 without explicit domain
separation, setting H4(X) = SHAKE256(X, 32) and G(X) = SHAKE256(X, 96). For consistency
with our results, which focus on sol function spaces, we model SHAKE256 as a random member of
a sol function space SS with some very large output length L, and assume that the adversary does
not request more than L bits of output from SHAKE256 in a single call. We let ES be the arity-2
sol function space defining sub-functions G and H4. In this setting, the cloning functor FNewHope :
SS → ES used by NewHope is defined by FNewHope[s](1, X) = s(X)[1..256] and FNewHope[s](2, X) =
s(X)[1..768]. We will show that this functor cannot achieve rd-indiff for the given oracle spaces and
the working domain W = {0, 1}∗. In Figure 9, we give an adversary A which has high advantage

25

in the rd-indiff game Grd-indiff
FNewHope,SS,ES,W,S for any indifferentiability simulator S. When b = 1 in game

Grd-indiff
FNewHope,SS,ES,W,S, we have that

yd[1..256] = FNewHope[s](d, 0)[1..256] = s(0)[1..256] = y[1..256],
so adversary A will always call fin on the bit 1 and win. When b = 0 in game Grd-indiff

FNewHope,SS,ES,W,S,
the two strings y1 = e0(1, X) and y2 = e0(2, X) will have different 256-bit prefixes, except with
probability ε = 2−256. Therefore, when A queries pub(0), the simulator’s response y can share the
prefix of most one of the two strings y1 and y2. Its response must be independent of d, which is
not chosen until after the query to pub, so Pr[y[1..256] = yd[1..256]] ≤ 1/2 + ε, regardless of the
behavior of S. Hence, A breaks the indifferentiability of QNewHope with probability roughly 1/2,
rendering NewHope’s random oracle functor differentiable.

The implication of this result is that NewHope’s implementation differs noticeably from the
model in which its security claims are set, even when SHAKE256 is assumed to be a random oracle.
This admits the possibility of hash function collisions and other sources of vulnerability that are not
eliminated by the security proof. To claim provable security for NewHope’s implementation, further
justification is required to argue that these potential collisions are rare or unexploitable. We do not
claim that an attack on read-only indifferentiability implies an attack on the IND-CCA security
of NewHope, but it does highlight a gap that needs to be addressed. Read-only indifferentiability
constitutes a useful tool for detecting such gaps and measuring the strength of various oracle cloning
methods.

6 Oracle Cloning in KEMs

Having shown rd-indiff of various practical cloning functors, we’d like to come back around and
apply this to show IND-CCA security of KEMs (as the target primitive of the NIST PQC submis-
sions) that use these functors. At one level, this may seem straightforward and unnecessary, for it
is a special case of a general indifferentiability composition theorem, which says that once indiffer-
entiability of a functor has been shown, “all” uses of it are secure. In particular, the composition
theorems of [28, 38] for MRH-indefferentiability apply also to rd-indiff and guarantee security when
the latter is measured via a single-stage game, which is true for IND-CCA KEMs. This, however,
fails to account for working domains, which are not present in prior indifferentiability formulations;
the existing composition results only guarantee security when the working domain is the full do-
main of the ending space. But this fails to be the case for some oracle cloning methods like length
differentiation that are used in NIST PQC KEMs. We want a composition theorem that can allow
us to conclude security of such usages.

For this, we first must ask what is the meaning or definition of the working domain in the
context of the application, here IND-CCA KEMs. Below, we define this. Then we give a working-
domain-conscious composition theorem for IND-CCA KEMs that allows us to draw the conclusions
mentioned above. The starting point for this treatment is to enhance the syntax of KEMs to allow
them to say precisely what types of ROs they want and use.

KEM syntax. In the formal version of the ROM in [10], there is a single random oracle that has
some fixed domain and range, for example mapping {0, 1}∗ to {0, 1}. Schemes, however, often want
multiple random oracles, and also want their oracles to have particular domains and ranges that
depend on the scheme. To capture this, we have the scheme syntax include a specification of the
desired function space from which the random oracle is then drawn by games defining security. We
suggest that schemes specified in standards include a specification of this space, to avoid errors.

Formally, a key-encapsulation mechanism (KEM) KE specifies the following. First is a func-

26

Game Gind−cca
KE

init:
1 H←$ KE.FS ; b←$ {0, 1}
2 (pk, dk)←$ KE.K[RO]
3 (C∗, K∗1)←$ KE.E[RO](pk)
4 K∗0 ←$ {0, 1}KE.kl

5 return pk, C∗, K∗b

Dec(C):
6 If (C = C∗) then return ⊥
7 K ← KE.D[RO](dk, C)
8 return K

RO(W):
9 return H (W)

fin(b′):
10 return (b = b′)

Figure 10: KEM security game for indistinguishability under chosen-ciphertext attacks.

tion space KE.FS. Now as usual there is a key-generation algorithm KE.K that, given access
to an oracle H ∈ KE.FS, returns a public encryption key and matching secret decryption key,
(pk, dk)←$ KE.K[H]. Next there is an encapsulation algorithm KE.E that, given input pk, and
given oracle H , returns a symmetric key K ∈ {0, 1}KE.kl and a ciphertext C encapsulating it,
(C,K)←$ KE.E[H](pk), where KE.kl is the symmetric-key length of KE. The randomness length of
KE.E is denoted KE.rl. Finally, there is a deterministic decapsulation algorithm KE.D that, given
inputs dk, C, and given oracle H , returns KE.D[H](dk, C) ∈ {0, 1}KE.kl ∪ {⊥}.
Security definitions. We cast the standard security notion of indistinguishability under chosen-
ciphertext attack (IND-CCA) for KEMs [17] in our extended syntax in Figure 10. Adversary A
gets a challenge ciphertext C∗ and a challenge key K∗b that is either the key K∗1 underlying C∗ or a
random key K∗0 , and, to win, must determine b. Decapsulation oracle Dec allows it to decapsulate
any non-challenge ciphertext of its choice. We let

Advind-cca
KE (A) = 2 Pr[Gind−cca

KE]− 1
to be the ind-cca advantage of adversary A.
Working domain of a KEM. Let KE be a KEM. Let W ⊆ Dom(KE.FS) be a subset of
Dom(KE.FS). Consider game Gwdom

KE,W in Figure 11. The intent is that, at the end of the game,
the set U contains all queries made to RO by the scheme algorithms, while excluding ones made
by the adversary A but not by scheme algorithms. Boolean flag sq controls when a query W to
RO is to be put in U in accordance with this policy. (We do assume all queries to RO are in
Dom(KE.FS).) The adversary wins if it can make the scheme algorithms query a point outside
the working domain. Its wdom-advantage is Advwdom

KE,W(A) = Pr[Gwdom
KE,W(A)]. We say that W is a

working domain of KE if Advwdom
KE,W(A) = 0 for all adversaries A, regardless of the running time and

number of oracle queries of A.
The set Dom(KE.FS) is always a working domain of KE. The interesting case is when one can

specify a subset of it that is a working domain.
Composition. Let KE be a given KEM that we assume is IND-CCA secure. Let F: SS→ KE.FS
be a functor. We associate to them the KEM KE = F(KE) that is defined as follows. Its function
space is KE.FS = SS, the starting space of the functor. The algorithms of KE, given an oracle for
s, run the corresponding algorithm of KE with oracle e = F[s]. Let W be a working domain for KE
and assume F is rd-indiff over W. Then Theorem 6.1, below, says that KE is IND-CCA as well.

The application to NIST PQC KEMs is as follows. Let KE be a base KEM from one of the
submissions, as discussed in Section 2, so that KE.FS is an arity-4 function space. We know (or are
willing to assume) that KE is IND-CCA. Now, we want to instantiate the four oracles of KE by a
single one, say drawn from the sol function space SS = SOL({0, 1}∗, `) for some given value of ` like

27

Game Gwdom
KE,W

init:
1 H←$ KE.FS ; sq← true
2 (pk,dk)←$ KE.K[RO] ; (C, K)←$ KE.E[RO](ek)
3 sq← false ; Return pk, C, K

Dec(C):
4 sq← true ; K ← KE.D[RO](dk, C) ; sq← false ; Return K

RO(W):
5 If sq then U ← U ∪ {W}
6 return H (W)

fin:
7 return (U 6⊆ W)

Figure 11: Game to determine the working domain W of a KEM KE.

` = 256. We pick a cloning functor F: SS→ KE.FS that determines a function for the base KEM
from one of the given functions. The example of interest is that this is the identity cloning functor,
which is not rd-indiff over its full domain. Instantiating the oracles of KE, via the functor applied
to an oracle of the starting space, yields the KEM KE. This is what, in Section 2, we called the final
KEM, and the question is whether it is IND-CCA. Employing length differentiation corresponds
to the base KEM having the corresponding working domain. From Section 5 we know that the
identify functor is rd-indiff over this working domain. Now Theorem 6.1 says that the final KEM
is IND-CCA.

Theorem 6.1 Let KE be a KEM. Let F: SS→ KE.FS be a functor. Let KE = F(KE) be the KEM
associated to them as above. Let W be a working domain for KE, and let S be a read-only simulator
for F. Let A be an ind-cca adversary. Then we construct adversaries B, and D such that

Advind-cca
KE (A) ≤ Advind-cca

KE (B) + 2 ·Advrd-indiff
F,SS,KE.FS,W,S(D) .

The running time of D is about that of A. If A makes q queries to RO, then the running time of
B is about that of A plus q times the running time of S.

Proof: Consider the games in Figure 12. We have
Advind-cca

KE (A) = 2 Pr[G0(A)]− 1

= 2 Pr[G1(A)]− 1 + 2(Pr[G0(A)]− Pr[G1(A)]) .
Let adversary B be as shown in Figure 13. Then

2 Pr[G1(A)]− 1 ≤ Advind-cca
KE (B) .

Game G3 is game Grd-indiff
F,SS,KE.FS,W,S. Game G2 drops the working domain check at line 4. Let

adversary D be as shown in Figure 13. Then
Pr[G0(A)]− Pr[G1(A)] ≤ 2 Pr[G2(D)]− 1 .

Games G2,G3 are identical-until-bad so by the Fundamental Lemma of Game Playing [11] we have
2 Pr[G2(D)]− 1 = 2 Pr[G3(D)]− 1 + 2(Pr[G2(D)]− Pr[G3(D)])

≤ 2 Pr[G3(D)]− 1 + 2 Pr[G2(D) sets bad] .

28

Games G0,G1

init:
1 s←$ SS ; e← F[s] // Game G0

2 st←$ S.Setup() ; e←$ KE.FS // Game G1

3 b←$ {0, 1}
4 (pk, dk)←$ KE.K[e]
5 (C∗, K∗1)←$ KE.E[e](pk)
6 K∗0 ←$ {0, 1}KE.kl

7 return pk, C∗, K∗b

Dec(C):
8 If (C = C∗) then return ⊥
9 K ← KE.D[e](dk, C)

10 return K

RO(U):
11 return s(U) // Game G0

12 return S.Ev[e](st, U) // Game G1

fin(b′):
13 return (b = b′)

Games G2, G3

init:
1 s←$ SS ; e1 ← F[s]
2 st←$ S.Setup() ; e0←$ KE.FS
3 c←$ {0, 1}

priv(W):
4 If W 6∈ W then
5 bad← true
6 return ⊥ // Game G3

7 return ec(W)

pub(U):
8 if (c = 1) then return s(U)
9 else return S.Ev[e0](st, U)

fin(c′):
10 return (c = c′)

Figure 12: Games for the proof of Theorem 6.1.

Adversary D:
1 Ainit′,Dec′,RO′,fin′

()

init′:
2 b←$ {0, 1}
3 (pk, dk)←$ KE.K[priv]
4 (C∗, K∗1)←$ KE.E[priv](pk)
5 K∗0 ←$ {0, 1}KE.kl

6 return pk, C∗, K∗b

Dec′(C):
7 If (C = C∗) then return ⊥
8 K ← KE.D[priv](dk, C)
9 return K

RO′(U):
10 return pub(U)

fin′(b′):
11 if (b = b′) then fin(1)
12 else fin(0)

Adversary B:
1 st←$ S.Setup()
2 Ainit′,Dec′,RO′,fin′

()

init′:
3 (pk, C∗, K∗b)← init()
4 return pk, C∗, K∗b

Dec′(C):
5 return Dec(C)

RO′(W):
6 return S.Ev[RO](st, W)

fin′(b′):
7 fin(b′)

Figure 13: Adversaries for the proof of Theorem 6.1.

29

Now we have
2 Pr[G3(D)]− 1 = Advrd-indiff

F,SS,KE.FS,W,S(D) .
Adversary D invokes its priv oracle only on points queried by scheme algorithms, and, regardless
of the challenge bit c, the function underlying priv is a member of KE.FS. BecauseW is a working
domain for KE, we have

Pr[G2(D) sets bad] = 0 .
This concludes the proof.

References

[1] M. Albrecht, C. Cid, K. G. Paterson, C. J. Tjhai, and M. Tomlinson. NTS-KEM. NIST PQC
Round 2 Submission, 2019. (Cited on page 4, 13.)

[2] E. Alkim, R. Avanzi, J. Bos, L. Ducas, A. de la Piedra, T. Pöppelmann, P. Schwabe, and
D. Stebila. NewHope: Algorithm specifications and supporting documentation. NIST PQC
Round 2 Submission, 2019. (Cited on page 4, 11, 25.)

[3] N. Aragon, P. S. L. M. Barreto, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit,
S. Gueron, T. Güneysu, C. Aguilar Melchor, R. Misoczki, E. Persichetti, N. Sendrier, J.-P.
Tillich, V. Vasseur, and G. Zémor. BIKE: Bit flipping key encapsulation. NIST PQC Round
2 Submission, 2019. (Cited on page 4, 12.)

[4] N. Aragon, O. Blazy, J.-C. Deneuville, P. Gaborit, A. Hauteville, O. Ruatta, J.-P. Tillich,
and G. Zémor. LOCKER: Low rank parity check codes encryption. NIST PQC Round 1
Submission, 2017. (Cited on page 4, 12.)

[5] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
G. Seiler, and D. Stehlé. CRYSTALS-Kyber: Algorithm specifications and supporting docu-
mentation. NIST PQC Round 2 Submission, 2019. (Cited on page 4, 13.)

[6] H. Baan, S. Bhattacharya, S. Fluhrer, O. Garcia-Morchon, T. Laarohoven, R. Player, R. Ri-
etman, M.-J. O. Saarinen, L. Tolhuizen, J. L. Torre-Arce, and Z. Zhang. Round5: KEM and
PKE based on (ring) learning with rounding. NIST PQC Round 2 Submission, 2019. (Cited
on page 4, 12.)

[7] G. Banegas, P. S. L. M. Barreto, B. O. Boidje, P.-L. Cayrel, G. N. Dione, K. Gaj, C. T. Gueye,
R. Haeussler, J. B. Klamti, O. N’diaye, D. T. Nguyen, E. Persichetti, and J. E. Ricardini.
DAGS: Key encapsulation from dyadic GS codes. NIST PQC Round 1 Submission, 2017.
(Cited on page 4, 10.)

[8] M. Bardet, É. Barelli, O. Blazy, R. Canto-Torres, A. Couvreur, P. Gaborit, A. Otmani,
N. Sendrier, and J.-P. Tillich. BIG QUAKE: Binary goppa quasi-cyclic key encapsulation.
NIST PQC Round 1 Submission, 2017. (Cited on page 4, 10.)

[9] M. Bellare, D. J. Bernstein, and S. Tessaro. Hash-function based PRFs: AMAC and its multi-
user security. In M. Fischlin and J.-S. Coron, editors, EUROCRYPT 2016, Part I, volume
9665 of LNCS, pages 566–595. Springer, Heidelberg, May 2016. (Cited on page 7.)

30

[10] M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient
protocols. In D. E. Denning, R. Pyle, R. Ganesan, R. S. Sandhu, and V. Ashby, editors, ACM
CCS 93, pages 62–73. ACM Press, Nov. 1993. (Cited on page 3, 7, 26.)

[11] M. Bellare and P. Rogaway. The security of triple encryption and a framework for code-based
game-playing proofs. In S. Vaudenay, editor, EUROCRYPT 2006, volume 4004 of LNCS,
pages 409–426. Springer, Heidelberg, May / June 2006. (Cited on page 14, 28.)

[12] D. J. Bernstein, T. Chou, T. Lange, I. von Maurich, R. N. Rafael Misoczki, E. Persichetti,
C. Peters, P. Schwabe, N. Sendrier, J. Szefer, and W. Wang. Classic McEliece: conservative
code-based cryptography. NIST PQC Round 2 Submission, 2019. (Cited on page 4, 13.)

[13] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. NTRU Prime. NIST
PQC Round 2 Submission, 2019. (Cited on page 4, 13.)

[14] M.-S. Chen, A. Hülsing, J. Rijneveld, S. Samardjiska, and P. Schwabe. MQDSS specifications.
NIST PQC Round 2 Submission, 2019. (Cited on page 13.)

[15] J. H. Cheon, S. Park, J. Lee, D. Kim, Y. Song, S. Hong, D. Kim, J. Kim, S.-M. Hong, A. Yun,
J. Kim, H. Park, E. Choi, K. Kim, J.-S. Kim, and J. Lee. Lizard public key encryption. NIST
PQC Round 1 Submission, 2017. (Cited on page 4, 12.)

[16] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya. Merkle-Damg̊ard revisited: How to
construct a hash function. In V. Shoup, editor, CRYPTO 2005, volume 3621 of LNCS, pages
430–448. Springer, Heidelberg, Aug. 2005. (Cited on page 5, 15.)

[17] R. Cramer and V. Shoup. Design and analysis of practical public-key encryption schemes secure
against adaptive chosen ciphertext attack. SIAM Journal on Computing, 33(1):167–226, 2003.
(Cited on page 3, 27.)

[18] J.-P. D’Anvers, A. Karmakar, S. S. Roy, and F. Vercauteren. SABER: Mod-LWR based KEM.
NIST PQC Round 2 Submission, 2019. (Cited on page 4, 12.)

[19] G. Demay, P. Gaži, M. Hirt, and U. Maurer. Resource-restricted indifferentiability. In T. Jo-
hansson and P. Q. Nguyen, editors, EUROCRYPT 2013, volume 7881 of LNCS, pages 664–683.
Springer, Heidelberg, May 2013. (Cited on page 5, 15.)

[20] A. W. Dent. A designer’s guide to KEMs. In K. G. Paterson, editor, 9th IMA International
Conference on Cryptography and Coding, volume 2898 of LNCS, pages 133–151. Springer,
Heidelberg, Dec. 2003. (Cited on page 3, 7, 8.)

[21] O. Garcia-Morchon and Z. Zhang. Round2: KEM and PKE based on GLWR. NIST PQC
Round 1 Submission, 2017. (Cited on page 4, 10.)

[22] M. Hamburg. Post-quantum cryptography proposal: ThreeBears. NIST PQC Round 2 Sub-
mission, 2019. (Cited on page 4, 13.)

[23] D. Hofheinz, K. Hövelmanns, and E. Kiltz. A modular analysis of the Fujisaki-Okamoto
transformation. In Y. Kalai and L. Reyzin, editors, TCC 2017, Part I, volume 10677 of
LNCS, pages 341–371. Springer, Heidelberg, Nov. 2017. (Cited on page 3, 7, 8.)

[24] A. Hülsing, J. Rijneveld, J. M. Schanck, and P. Schwabe. NTRU-HRSS-KEM: Algorithm
specifications and supporting documentations. NIST PQC Round 1 Submission, 2017. (Cited
on page 4, 13.)

31

[25] D. Jao, R. Azarderakhsh, M. Campagna, C. Costello, L. D. Feo, B. hess, A. Jalali, B. Koziel,
B. LaMacchia, P. Longa, M. Naehring, J. Renes, V. Soukharev, and D. Urbanik. Supersingular
isogeny key encapsulation. NIST PQC Round 2 Submission, 2019. (Cited on page 4, 13.)

[26] H. Jiang, Z. Zhang, L. Chen, H. Wang, and Z. Ma. IND-CCA-secure key encapsulation
mechanism in the quantum random oracle model, revisited. In H. Shacham and A. Boldyreva,
editors, CRYPTO 2018, Part III, volume 10993 of LNCS, pages 96–125. Springer, Heidelberg,
Aug. 2018. (Cited on page 3, 7, 8.)

[27] X. Lu, Y. Liu, D. Jia, H. Xue, J. He, and Z. Zhang. LAC: Lattice-based cryptosystems. NIST
PQC Round 2 Submission, 2019. (Cited on page 4, 12.)

[28] U. M. Maurer, R. Renner, and C. Holenstein. Indifferentiability, impossibility results on
reductions, and applications to the random oracle methodology. In M. Naor, editor, TCC 2004,
volume 2951 of LNCS, pages 21–39. Springer, Heidelberg, Feb. 2004. (Cited on page 3, 5, 15,
16, 26.)

[29] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit,
A. Hauteville, O. Ruatta, J.-P. Tillich, and G. Zémor. ROLLO: Rank-ouroboros, LAKE, &
LOCKER. NIST PQC Round 2 Submission, 2018. (Cited on page 4, 12.)

[30] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. Deneuville, P. Gaborit, and
G. Zémor. Rank quasi-cyclic (RQC). NIST PQC Round 2 Submission, 2019. (Cited on page 4,
13.)

[31] C. A. Melchor, N. Aragon, S. Bettaieb, L. Bidoux, O. Blazy, J.-C. D. P. Gaborit, and E. P. G.
Zémor. Hamming quasi-cyclic (HQC). NIST PQC Round 2 Submission, 2019. (Cited on
page 4, 13.)

[32] A. Mittelbach. Salvaging indifferentiability in a multi-stage setting. In P. Q. Nguyen and
E. Oswald, editors, EUROCRYPT 2014, volume 8441 of LNCS, pages 603–621. Springer,
Heidelberg, May 2014. (Cited on page 5, 15.)

[33] M. Naehrig, E. Alkim, J. W. Bos, L. Ducas, K. Easterbrook, B. LaMacchia, P. Longa,
I. Mironov, V. Nikolaenko, C. Peikert, A. Raghunathan, and D. Stebila. FrodoKEM: Learning
with errors key encapsulation. NIST PQC Round 2 Submission, 2019. (Cited on page 4, 13.)

[34] NIST. Post-Quantum Cryptography Standardization Process. https://csrc.nist.gov/
projects/post-quantum-cryptography. (Cited on page 3.)

[35] NIST. Federal Information Processing Standard 202, SHA-3 Standard: Permutation-Based
Hash and Extendable-Output Functions, Aug 2015. (Cited on page 4.)

[36] NIST. PQC Standardization Process: Second Round Candidate Announcement. https://
csrc.nist.gov/news/2019/pqc-standardization-process-2nd-round-candidates, Jan.
2019. (Cited on page 3.)

[37] T. Plantard. Odd manhattan’s algorithm specifications and supporting documentation. NIST
PQC Round 1 Submission, 2017. (Cited on page 4, 12.)

[38] T. Ristenpart, H. Shacham, and T. Shrimpton. Careful with composition: Limitations of the
indifferentiability framework. In K. G. Paterson, editor, EUROCRYPT 2011, volume 6632 of
LNCS, pages 487–506. Springer, Heidelberg, May 2011. (Cited on page 5, 7, 15, 16, 19, 26.)

32

https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/projects/post-quantum-cryptography
https://csrc.nist.gov/news/2019/pqc-standardization-process-2nd-round-candidates
https://csrc.nist.gov/news/2019/pqc-standardization-process-2nd-round-candidates

[39] T. Saito, K. Xagawa, and T. Yamakawa. Tightly-secure key-encapsulation mechanism in the
quantum random oracle model. In J. B. Nielsen and V. Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 520–551. Springer, Heidelberg, Apr. / May 2018. (Cited
on page 3, 7, 8.)

[40] M. Seo, J. H. Park, D. H. Lee, S. Kim, and S.-J. Lee. Proposal for NIST post-quantum
cryptography standard: EMBLEM and R.EMBLEM. NIST PQC Round 1 Submission, 2017.
(Cited on page 4, 13.)

[41] N. P. Smart, M. R. Albrecht, Y. Lindell, E. Orsini, V. Osheter, K. G. Paterson, and G. Peer.
LIMA: A PQC encryption scheme. NIST PQC Round 1 Submission, 2017. (Cited on page 4,
13.)

[42] R. Steinfeld, A. Sakzad, and R. K. Zhao. Titanium: Proposal for a NIST post-quantum public-
key encryption and KEM standard. NIST PQC Round 1 Submission, 2017. (Cited on page 4,
12.)

[43] Y. Zhao, Z. Jin, B. Gong, and G. Sui. A modular and systematic approach to key establishment
and public-key encryption based on LWE and its variants. NIST PQC Round 1 Submission,
2017. (Cited on page 4, 12.)

33

	Introduction
	Oracle Cloning in NIST PQC Candidates
	Design process
	The base KEM
	Submissions we break
	Submissions with unclear security
	Submissions with provable security but ambiguous specification
	Submissions with clear provable security

	Preliminaries
	Read-only indifferentiability of translating functors
	Functors and read-only indifferentiability
	Translating functors
	Rd-indiff of translating functors

	Analysis of cloning functors
	Oracle Cloning in KEMs

