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Abstract. The traditional approach to build a secure connection is to run a key exchange protocol and,
once the key has been established, to use this key afterwards in a secure channel protocol. The security
of key exchange and channel protocols, and to some extent also of the composition of both, has been
scrutinized extensively in the literature. However, this approach usually falls short of capturing some
key exchange protocols in which, due to practical motivation, the originally separated phases become
intertwined and keys are established continuously. Two prominent examples of such protocols are TLS
(with resumption), and Google’s recently proposed low-latency protocol QUIC.

In this work we revisit the previous security of model of Brzuska et al. (CCS’11) and expand it into a
multi-stage key exchange model in the style of Bellare and Rogaway. In our model, parties can establish
multiple keys in different stages and use these keys between stages, even to establish the next key. The
advantage of using the formalization of Brzuska et al. is that it has been designed with the aim to provide
compositional guarantees. Hence, we can, too, give sufficient conditions under which multi-stage key
exchange protocols compose securely with any symmetric-key application protocol, like a secure channel
protocol.

We then exercise our model for the case of the QUIC protocol. Basically, we show that QUIC is an

adequately secure multi-stage key exchange protocol and meets the suggested security properties of the

designers. We continue by proposing some slight change to QUIC to make it more amenable to our

composition result and to allow reasoning about its security as a combined connection establishment

protocol when composed with a secure channel protocol.
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Figure 1: High-level protocol run description of Google’s QUIC with 0-RTT handshake.

1 Introduction

The classical deployment of authenticated key exchange (AKE) protocols is to establish a secure key
between two parties and subsequently use this key to secure the actual communication. From a security
point of view this is often connected with the understanding that the key exchange step is executed once,
at the beginning, and ceases as soon as the key is established. The only information passed to the following
protocol flow is a cryptographically strong key, usually specified to look random to any adversary [BR94].

Practical needs, however, seem to impose a more flexible use of key exchange protocols by rather
viewing the key establishing as a continuous process which can be arbitrarily interleaved with the use
of the key. Two prominent examples are SSL/TLS [DR08] and the recently introduced QUIC protocol
of Google [Ros13]. In case of SSL/TLS, in the resumption step of an already established session, the
client and the server generate a fresh session key from the master secret. This master secret has been
created in the initial (full) handshake protocol execution and used to derive keys for the record layer.
Session resumption has been added to SSL/TLS for efficiency reasons, in order to be able to skip the more
expensive public key operations.

Google’s recently proposed protocol QUIC (for “Quick UDP Internet Connections”) is a Diffie-Hellman
based connection establishment protocol. It also aims at efficiency improvements, but focuses on reducing
the round complexity of the interactions. It starts with the client being able to deliver data to the server
immediately—i.e., with zero round-trip time (0-RTT), protected under an intermediate cryptographic key.
At some point, the server replies with its contribution to the key exchange. Both parties then switch to a
stronger key and continue the interaction with that key. The basic version of the protocol is displayed in
Figure 1.

1.1 Multi-Stage Key Exchange

Both examples, SSL/TLS and QUIC, reveal that current single-stage AKE models are inappropriate to
capture desirable construction strategies. For one, they do not allow mixing key exchange steps with the
channel protocol. Second, they do not consider key exchange steps in which keys with increasing strengths
are gradually derived and used in between, possibly to derive the next key. The latter also implies that
one cannot simply view the stages as runs of independent key exchange protocols, e.g., as possible for
SSL/TLS renegotiation [GKS13]. Hence, our goal here is to define a sufficiently rich model for multi-stage
key exchange protocols.

Our starting point will be the Bellare–Rogaway model, as it is liberal enough to capture many protocols,
but also provides reasonably strong security guarantees. We prudently use the formalization in [Brz13,
BFWW11], as we can then more easily argue about composability with arbitrary symmetric-key protocols.
A major difference with the single-stage case lies in the dependencies of the different stages. In QUIC, for
instance, the final key is protected under the stage-one key by sending the server’s ephemeral Diffie-Hellman
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key through a secure channel. This example indicates that we need to carefully devise and motivate when
session keys should be considered fresh (and thus indistinguishable from random) in the sense that they
are not trivially available to the adversary. We also give definitions for both unilaterally and mutually
authenticated key exchange protocols to capture cases like SSL/TLS and QUIC in which only the server
authenticates.

Another important point is the interplay of key exchange steps with protocol steps using the keys.
A viable strategy, which is also used in QUIC, seems to be to run later key exchange phases through
channels secured by previous keys, where the channel protocol is identical to the application protocol
(and is even based on the same session key). This potentially introduces formal, yet somewhat contrived
vulnerabilities when both protocols are composed. We call protocols like QUIC in which keys of some
stage are used to derive the next key session-key dependent (or simply: key dependent), whereas protocols
in which knowledge of the session key alone does not endanger the security of the subsequent key are called
(session-)key independent. An example of a key-independent protocol is SSL/TLS with resumption, as
the session keys in all stages are derived from the master secret in such a way that knowing some session
keys, but not the master secret, does not help to compute another session key.

1.2 Composition

Providing compositional guarantees (as in the Bellare–Rogaway model with session matching [BFWW11])
is one of additional goals here. It turns out that our notion of key independence is a crucial aspect to
give a general composition result of multi-stage key exchange steps with symmetric-key based application
protocols like secure channels. We prove that any multi-stage authenticated key exchange protocol, which
is key-independent and forward-secret, can be securely composed with any secure symmetric-key protocol.

Superficially, the key-independence requirement for composition seems to be related to the insecurity
of the SSL/TLS handshake protocol in the Bellare–Rogaway model, due to usage of the session key in the
finished message. However, SSL/TLS is not a secure (single-stage) key exchange protocol, independently
of the question of composition.1 In contrast, a multi-stage protocol should explicitly allow to use a key to
derive the next keys. In this sense, the model should declare such protocols as secure; it is rather the “bad”
interplay with the application protocol we need to take care of when proving our composition theorem.

1.3 Analysis of QUIC

The “test case” for our model will be Google’s QUIC protocol. This protocol is simpler than SSL/TLS and
we are not aware of any previous evaluations about its cryptographic strength.2 Investigating QUIC also
avoids the need to deal with the problem of key deployment for the finished message as in SSL/TLS, which
often leads researchers to use alternative approaches for security analyses [JKSS12, KPW13, BFS+13]. We
show that QUIC is a secure key exchange protocol, assuming idealized key derivation via random oracles,
the Gap Diffie-Hellman assumption [OP01], and use of a secure channel. Here we distinguish between the
keys of the two stages, showing that the stage-one key provides basic key secrecy, whereas the stage-two
key even yields forward secrecy.

Note that our result about QUIC being a secure key exchange protocol shows that the protocol, as is,
does not show any weakness, although the security bounds are far from being tight. Ideally, though, we
would like to argue that QUIC, together with a secure channel protocol, provides a fully secure connection.
This is where the compositional properties of our model and the composition result come into play. Recall
that this result requires the key exchange protocol to be (session-)key independent and forward-secret.

1The Bellare–Rogaway model has been designed with compositional guarantees in mind, of course, but the problem with
SSL/TLS already appears when considered as a stand-alone key exchange protocol.

2In an independent and concurrent work, Boldyreva et al. [BLNR14, LJBN15] also investigated the security of QUIC.
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Therefore, we first propose a slight modification of QUIC to turn it into a key-independent protocol,
following the same idea as in SSL/TLS resumption. We then can conclude that compositional security
with any symmetric-key protocol using the forward-secret second-stage session key is indeed achieved by
the modified version of QUIC.

In summary, our results show that QUIC can be analyzed as a multi-stage key exchange protocol. It
shows strong security properties, despite its low complexity. In particular, the trade-off between 0-RTT
performance and forward secrecy is only one round trip which is indeed optimal. Still, as we discuss, with
little effort QUIC can be strengthened further to facilitate the compositional analysis.

2 Modeling Multi-Stage Key Exchange

We model security of multi-stage key exchange protocols along the lines of the seminal paper of Bellare
and Rogaway [BR94]. The formalization of our notions is inspired by the notation used by Brzuska et
al. [Brz13, BFWW11].

2.1 Overview

Before diving into the technical details, let us provide an overview, especially about changes originating
from the multi-stage setting, and some motivation. The previous single-stage model in [Brz13, BFWW11]
kept lists of session information, including values stexec about the state (accepted, running, or rejected),
the session key K, the status stkey of the key (fresh or revealed), and a session identifier sid. Here, we
basically take care of multiplicity by storing vectors of these entries and a variable stage describing the
stage a session is in.

As in the basic setting, the adversary can interact with sessions via oracle queries NewSession, Send,
Reveal, Corrupt, and Test in order to initiate a new session, send messages to that session, reveal the session
key, corrupt the long-term secret key of a party, and test a session key against a random key, respectively.
We note that we do not cover session-state leakage in our model, as in the CK model [CK01] or in the
extended CK model [LLM07]. One can augment our model with such queries, though.

One difference in our model, owed to the fact that an execution can continue after some session has
accepted and derived an intermediate key which can be potentially tested, is that after acceptance the
reply to such a Send command is delayed. Also, in case of testing a session key and returning the genuine
or a random key to the adversary, we let the subsequent key exchange step—which may now depend on
this session key in the multi-stage setting—use the genuine or the random key. Otherwise, distinguishing
the session keys from random might be trivial.

Another difference, motivated by QUIC, is the introduction of so-called temporary keys. These keys
are somewhat in between ephemeral keys and static keys. QUIC suggests to let the server use the short-
term key in the second stage in multiple sessions. The description [LC13] speaks of a life span of about
60 seconds in which the same key is used in every session of this server. Hence, temporary keys, analogous
to static keys, are not bound to a single session. At the same time, they are too transient to be susceptible
to cryptanalytic attacks, such that we do not reveal these key in case of a Corrupt query. In the model,
to avoid introduction of timing events, we let the adversary decide when the parties should switch to a
new temporary key via a NewTempKey command. We however stress that the NewTempKey query can be
omitted for analyses of protocols that do not comprise temporary keys without affecting our compositional
results.

We also make the usual distinction between non-forward secrecy and forward secrecy, where the latter
protects sessions that accepted before corruption took place. In our multi-stage setting, session keys can
become forward-secret starting from a certain stage on, such that we introduce the notion of stage-j forward
secrecy. We also differentiate between (session-)key-dependent and (session-)key-independent multi-stage
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protocols. The difference is basically that, for key-dependent schemes, the session key of stage i is used
to derive the session key of stage i + 1, typically to enhance the security properties of the session keys.
QUIC is an example of such a protocol. This property directly affects the adversary’s capabilities in the
sense that we cannot allow the adversary to reveal the session key of stage i before the key of stage i+ 1
is established. For key-independent protocols, exposure of the preceding session key, in contrast, does not
weaken the next session key (e.g., SSL/TLS with resumption is key-independent, as new keys are derived
freshly from the previous master secret, not from the previous session key).3

Finally, in order to be able to reason about protocols where only one participant in a session is authen-
ticated, our model captures both unilateral as well as mutual authentication of participants.

As in [Brz13, BFWW11], we model security according to two games, one for key indistinguishability,
and one for matching. The former is the classical notion of random-looking keys, refined according to key
(in)dependence, (stage-j) forward secrecy, and unilateral or mutual authentication. The Match-property
gives straightforward security guarantees, such as identical keys in partnered sessions, authenticity of the
partner, and collision-freeness of session identifiers.

2.2 Preliminaries

We denote by U the set of identities used to model the participants in the system, each identified by some
U ∈ U and associated with a long-term public key pkU and corresponding secret key skU . Sessions of a
protocol are uniquely identified (on the administrative level of the model) using a label label ∈ LABELS =
U ×U ×N, where (U, V, k) indicates the k-th local session of identity U (the session owner) with V as the
intended communication partner.

For each session, a tuple with the following information is maintained as an entry in the session list
ListS, where values in square brackets indicate the respective default/initial value:

• label ∈ LABELS: the (administrative) session label

• U ∈ U : the session owner

• V ∈ U : the communication partner

• role ∈ {initiator, responder}: the session owner’s role in this session (initiator or responder)

• kidU : the key identifier of the session owner (see below)

• kidV : the key identifier of the communication partner

• stexec ∈ (RUNNING ∪ ACCEPTED ∪ REJECTED): the state of execution [running0], where RUNNING =
{runningi | i ∈ N0}, ACCEPTED = {acceptedi | i ∈ N}, REJECTED = {rejectedi | i ∈ N}

• stage ∈ {0, . . . ,M}: the current stage [0], where M is the maximum stage4 and stage is incremented
to i when stexec reaches acceptedi resp. rejectedi

• sid ∈ ({0, 1}∗ ∪ {⊥})M: the session identifiers [(⊥)M], where sidi indicates the session identifier in
stage i 6= 0

• K ∈ ({0, 1}∗ ∪ {⊥})M: the established session keys [(⊥)M], where Ki indicates the established session
key in stage i 6= 0

3One could even go further and consider key dependence with respect to each stage individually. We do not do so in order
to keep the model simple.

4We fix a maximum stage M only for ease of notation. Note that M can be arbitrary large in order to cover protocols
where the number of stages is not bounded a priori.
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• stkey ∈ {fresh, revealed}M: the states of the session keys [(fresh)M], where stkey,i indicates the state of
the session key in stage i 6= 0

• tested ∈ {true, false}M: the test indicator [(false)M], where testedi = true means that Ki has been
tested

By convention, if we add a partly specified tuple (label, U, V, role, kidU , kidV ) to ListS, then the other tuple
entries are set to their default value.

We identify key material used to interact within one or several protocol executions by some unique,
administrative key identifier kid, pointing to some entry in the key list ListK, where the following associated
information is stored:

• kid: the key identifier

• U ∈ U : the identity associated with this key

• tpk: a temporary public key

• tsk: the corresponding temporary secret key

As labels and key identifiers are unique, we write as a shorthand label.sid for the element sid in the
tuple with label label in ListS, and kid.tpk for the element tpk in the tuple with key identifier kid in ListK.

2.3 Adversary Model

We consider a probabilistic polynomial-time (PPT) adversaryA which controls the communication between
all parties, enabling interception, injection, and dropping of messages. Moreover, as illustrated earlier, we
distinguish different levels of the following three (orthogonal) security aspects of a multi-stage key exchange
scheme: key dependence, forward secrecy, and authentication.

Key dependence. We distinguish key-dependent and key-independent protocols, where key dependence
means that the session key Ki+1 of some stage i+1 depends on the session key Ki of the previous stage i in
a way that disclosure of Ki before Ki+1 has been established compromises the latter. As mentioned earlier,
Google’s QUIC protocol is an example of a key-dependent scheme, whereas SSL/TLS with resumption is
key independent.

We reflect key dependence in our model by restricting the disclosure of the current stage’s session
key via Reveal queries in the case of key-dependent security. Note that we however allow compromises
of a session key Ki after key Ki+1 of the next stage has been established—even in combination with
simultaneous attacks (i.e., testing) on Ki+1. This models the intuitive requirement that session keys in
a multi-stage key exchange can (or often should) become stronger with increasing stage. In particular,
Ki+1 should not depend trivially on Ki as, e.g., in Ki+1 = Hash(Ki). We require that in fact Ki+1 is still
indistinguishable from random given the revealed previous session key Ki or even all preceding session keys
Kj with j ≤ i.

Forward secrecy. The well-established notion of forward secrecy requires that established (i.e., ac-
cepted) session keys remain secure even if the long-term secrets are exposed. Classical forward secrecy is
a binary notion: a single-stage key exchange scheme can be either forward-secret or non-forward-secret.
In the setting of multi-stage key exchange, however, a protocol might achieve forward secrecy only from
a certain stage onwards, i.e., session keys in lower stages become insecure on exposure of long-term keys
while keys of this stage (and higher stages) remain secure.
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Therefore, we differentiate in our model between non-forward-secret and stage-j-forward-secret proto-
cols, where stage-j forward secrecy indicates that session keys Ki established at some stage i ≥ j remain
secure when the involved long-term secrets get exposed, whereas keys at stages i < j may become insecure.

Unilateral authentication. In order to capture key exchange protocols where only one side is au-
thenticated (as, e.g., in Google’s QUIC), we distinguish between unilateral authentication and mutual
authentication in protocols, where the former only authenticates one party, in our case the responder, and
the latter authenticates both communication partners. As a consequence, in the unilateral case where only
the responder authenticates, we mainly aim for secrecy of session keys of the initiator, or of the responder
if it communicates with an honest party and the adversary merely observes the interaction. Since the
adversary can trivially impersonate the unauthenticated party, we cannot hope for key secrecy on the
responder’s side beyond that.

Adversarial interaction. The adversary interacts with the protocol via the following queries:

• NewSession(U, V, role, kidU , kidV ): Creates a new session for participant identity U with role role and
key identifier kidU having V with key identifier kidV as intended partner.

If there is no tuple with key identifier kidU or no tuple with identifier kidV in ListK, return an error
symbol⊥. Otherwise, generate a (unique) new label label and add the entry (label, U, V, role, kidU , kidV )
to ListS.

• Send(label,m): Sends a message m to the session with label label.

If there is no tuple (label, U, V, role, kidU , kidV , stexec, stage, sid,K, stkey, tested) in ListS, return ⊥. Oth-
erwise, run the protocol on behalf of U on message m and provide the adversary with the response
and the updated state of execution stexec. As a special case, if role = initiator and m = init, the
protocol is initiated (without any input message).

If, during the protocol execution, the state of execution changes to acceptedi for some i, the pro-
tocol execution is immediately suspended and acceptedi is returned as result to the adversary.
The adversary can later trigger the resumption of the protocol execution by issuing a special
Send(label, continue) query. For such a query, the protocol continues as specified, with the party
creating the next protocol message and handing it over to the adversary together with the resulting
state of execution stexec. We note that this is necessary to allow the adversary to test such a key,
before it may be used immediately in the response and thus cannot be tested anymore for trivial
reasons.

If the state of execution changes to stexec = acceptedi for some i and there is a tuple (label′, V, U,
role′, kidV , kidU , st

′
exec, stage

′, sid′,K′, st′key, tested
′) in ListS with sidi = sid′i and st′key,i = revealed, then,

for key-independent security, stkey,i is set to revealed as well, whereas for key-dependent security, all
stkey,i′ for i′ ≥ i are set to revealed. The former corresponds to the case that session keys of partnered
sessions should be considered revealed as well, the latter implements that for key dependency all
subsequent keys are potentially available to the adversary, too.

If the state of execution changes to stexec = acceptedi for some i and there is a tuple (label′, V, U,
role′, kidV , kidU , st

′
exec, stage

′, sid′,K′, st′key, tested
′) in ListS with sidi = sid′i and tested′i = true, then set

label.Ki ← label′.K′i and label.testedi ← true. This ensures that, if the partnered session has been
tested before, this session’s key Ki is set consistently5 and later Test queries are answered accordingly.

5Note that this implicitly assumes the following property of the later defined Match security: Whenever two partnered
sessions both accept a key in some stage, these keys will be equal.
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If the state of execution changes to stexec = acceptedi for some i and the intended communication
partner V is corrupted, then set stkey,i ← revealed.

• NewTempKey(U): Generate a new temporary key pair (tpk, tsk), add the entry (kid, U, tpk, tsk) for
some (unique) new label kid to ListK, and return kid.

Note that we do not invalidate old key identifiers of the same identity U (as protocols would pre-
sumably do), but keep the model instead as general as possible at this point, especially since active
protocol runs may still rely on the previous keys.

• Reveal(label, i): Reveals the session key of stage i in the session with label label.

If there is no tuple (label, U, V, role, kidU , kidV , stexec, stage, sid,K, stkey, tested) in ListS, or i > stage,
or testedi = true, then return ⊥. Otherwise, set stkey,i to revealed and provide the adversary with Ki.

If there is a tuple (label′, V, U, role′, kidV , kidU , st
′
exec, stage

′, sid′,K′, st′key, tested
′) in ListS with sidi =

sid′i and stage′ ≥ i, then st′key,i is set to revealed as well. This means that the i-th session keys of all
partnered sessions (if already established) are considered revealed as well.

As above, in the case of key-dependent security, since future keys depend on the revealed key, we
cannot ensure their security anymore (neither in this session in question, nor in partnered sessions).
Therefore, if i = stage, set stkey,j = revealed for all j > i, as they depend on the revealed key. For
the same reason, if a partnered session label′ with sidi = sid′i has stage′ = i, then set st′key,j = revealed
for all j > i. Note that if however stage′ > i, then keys K′j for j > i derived in the partnered session
are not considered to be revealed by this query since they have been accepted previously without
adversarial interaction.

• Corrupt(U): Provide (skU , pkU ) to the adversary. No further queries are allowed to sessions owned
by U .

In the non-forward-secret case, for all sessions (label, U, V, role, kidU , kidV , stexec, stage, sid,K, stkey,
tested) and all i ∈ {1, . . . ,M}, set stkey,i to revealed. In this case, all (previous and future) ses-
sion keys are considered to be disclosed.

In the case of stage-j forward secrecy, stkey,i is set to revealed only if i < j or if i > stage. This
means that sessions keys before the j-th stage (where forward secrecy kicks in) as well as keys that
have not yet been established are potentially disclosed.

Independent of the forward secrecy aspect, in the case of key-dependent security, setting the relevant
key states to revealed for some stage i is done by internally invoking Reveal(label, i), ignoring the
response and also the restriction that a call with i > stage would immediately return ⊥. This
ensures that follow-up revocations of keys that depend on the revoked keys are carried out correctly.

Note that we do not reflect leakage of temporary keys here, which can be considered a possible
extension of our model. Concerning QUIC, though, disclosure of the temporary keys indeed exposes
all ephemeral key material and thus trivially renders forward secrecy unachievable.

• Test(label, i): Tests the session key of stage i in the session with label label. In the security game
below this oracle will be given a test bit btest as state which is fixed throughout the game.

If there is no tuple (label, U, V, role, kidU , kidV , stexec, stage, sid,K, stkey, tested) in ListS or if label.stexec 6=
acceptedi, return ⊥. If there is a tuple (label′, V, U, role′, kidV , kidU , st

′
exec, stage

′, sid′,K′, st′key, tested
′)

in ListS with sidi = sid′i, but st′exec 6= acceptedi, return ⊥. This ensures that keys can only be tested
if they have just been accepted (and not used yet), in particular if there is a partnered session that
already established this key.

9



KI,1-FS,U

KD,1-FS,U

KI,2-FS,U

KD,2-FS,U

KI,M-FS,U

KD,M-FS,U

KI,NFS,U

KD,NFS,U

KI,1-FS,M

KD,1-FS,M

KI,2-FS,M

KD,2-FS,M

KI,M-FS,M

KD,M-FS,M

KI,NFS,M

KD,NFS,M

Figure 2: Hierarchy of the Multi-Stage security flavors key-independent (KI) and key-dependent (KD), stage-n-forward-secret
(n-FS) and non-forward-secret (NFS), as well as mutual authentication (M) and unilateral authentication (U) for a multi-stage
key exchange protocol with M stages. A solid arrow from A to B denotes that A implies B, the dotted arrows indicates that
intermediate flavors are omitted.

If label.testedi = true, return Ki, ensuring that repeated queries will be answered consistently.

In the case of unilateral authentication, if label.role = responder and there is no tuple (label′, V, U,
role′, kidV , kidU , st

′
exec, stage

′, sid′,K′, st′key, tested
′) in ListS with sidi = sid′i and role′ = initiator, return

⊥. This means the adversary is not allowed to test responder (i.e., authenticated) sessions that
do not communicate with a genuine initiator. Note that ListS entries are only created for honest
sessions, i.e., sessions generated by NewSession queries.

Otherwise, set label.testedi to true. If the test bit btest is 0, sample label.Ki
$← D at random, where

D is the session key distribution. This means that we substitute the session key by a random
and independent key which is also used for future deployments within the key exchange protocol.
Moreover, if there is a tuple (label′, V, U, role′, kidV , kidU , st

′
exec, stage

′, sid′,K′, st′key, tested
′) in ListS

with sidi = sid′i, also set label′.K′i ← label.Ki and label′.tested′i ← true to ensure consistency.

Return label.Ki.

2.4 Security of Multi-Stage Key Exchange Protocols

We are now ready to state our security notions.

2.4.1 Match Security

Following the approach of Brzuska et al. [BFWW11, Brz13] we split the (security) requirements of matching
sessions and Bellare–Rogaway-like key secrecy into two games. Here, Match security ensures that the
session identifiers sid effectively match the partnered sessions in the sense that

1. sessions with the same identifier for some stage hold the same key at that stage,

2. sessions are partnered with the intended (authenticated) participant,

3. session identifiers do not match across different stages, and

4. at most two sessions have the same session identifier at any stage.

The Match security game GMatch
KE,A thus is defined as follows.

Definition 2.1 (Match security) Let KE be a key exchange protocol and A a PPT adversary interacting
with KE via the queries defined in Section 2.3 within the following game GMatch

KE,A :
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Setup. The challenger generates long-term public/private-key pairs for each participant U ∈ U .

Query. The adversary A receives the generated public keys and has access to the queries NewSession,
Send, NewTempKey, Reveal, and Corrupt.

Stop. At some point, the adversary stops with no output.

We say that A wins the game, denoted by GMatch
KE,A = 1, if at least one of the following conditions hold:

1. There exist two distinct labels label, label′ and some stage i ∈ {1, . . . ,M} such that label.sidi =
label′.sidi 6= ⊥, label.stage ≥ i, label′.stage ≥ i, label.stexec 6= rejectedi, and label′.stexec 6= rejectedi,
but label.Ki 6= label′.Ki. (Distinct accepted session keys in some stage of partnered sessions.)

2. There exist two distinct labels label, label′ such that label.sidi = label′.sidj 6= ⊥ for some stages
i, j ∈ {1, . . . ,M}, label.role = initiator, and label′.role = responder, but label.V 6= label′.U or (only in
the case of mutual authentication) label.U 6= label′.V . (Distinct intended authenticated responder.)

3. There exist two (not necessarily distinct) labels label, label′ such that label.sidi = label′.sidj 6= ⊥ for
some stages i, j ∈ {1, . . . ,M} with i 6= j. (Different stages share the same session identifier.)

4. There exist three distinct labels label, label′, label′′ such that label.sidi = label′.sidi = label′′.sidi 6= ⊥
for some stage i ∈ {1, . . . ,M}. (More than two sessions share the same session identifier.)

We say KE is Match-secure (with unilateral resp. mutual authentication) if for all PPT adversaries A the
following advantage function is negligible in the security parameter:

AdvMatch
KE,A := Pr

[
GMatch

KE,A = 1
]
.

Note that we sometimes specify the notion of unilateral security by speaking of initiator-authenticated
or responder-authenticated unilateral security.

2.4.2 Multi-Stage Security

The Multi-Stage security game GMulti-Stage,D
KE,A , which ensures Bellare–Rogaway-like key secrecy, is defined as

follows.

Definition 2.2 (Multi-Stage security) Let KE be a key exchange protocol and A a PPT adversary in-

teracting with KE via the queries defined in Section 2.3 within the following game GMulti-Stage,D
KE,A , where D

is the distribution from which random keys are chosen in Test queries:

Setup. The challenger generates long-term public/private-key pairs for each participant U ∈ U and

chooses the test bit btest
$← {0, 1} at random.

Query. The adversary A receives the generated public keys and has access to the queries NewSession,
Send, NewTempKey, Reveal, Corrupt, and Test.

Guess. At some point, the adversary stops and outputs a guess b.

We say that A wins the game, denoted by GMulti-Stage,D
KE,A = 1, if all of the following conditions hold:

1. b = btest.
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2. There do not exist two (not necessarily distinct) labels label, label′ and some stage i ∈ {1, . . . ,M}
such that label.sidi = label′.sidi, label.stkey,i = revealed, and label′.testedi = true. (Adversary has
tested and revealed the key in a single session or in two partnered sessions.)

Note that the winning conditions are independent of the key dependency, forward secrecy, and authentica-
tion properties of KE, as they are directly integrated in the affected (Reveal, Corrupt, resp. Test) queries.

We say KE is Multi-Stage-secure in a key-dependent resp. key-independent and non-forward-secret resp.
stage-j-forward-secret manner and with unilateral resp. mutual authentication if KE is Match-secure and
for all PPT adversaries A the following advantage function is negligible in the security parameter:

AdvMulti-Stage,D
KE,A := Pr

[
GMulti-Stage,D

KE,A = 1
]
− 1

2
.

We notice that the different flavors of Multi-Stage security that a multi-stage key exchange protocol with
M stages can provide form an ordered hierarchy (according to their strength) as depicted in Figure 2, where
key-independent stage-1 forward secrecy with mutual authentication is the strongest and key-dependent
non–forward secrecy with unilateral authentication is the weakest notion.

3 Composition

Ideally, one would like to see a composition result for Multi-Stage-secure key exchange protocols in the
sense that such protocols—potentially under some condition—can be securely composed with arbitrary
symmetric-key protocols, as is the case with Bellare–Rogaway-secure key exchange protocols [BFWW11].
In this section, we prove that indeed secure composition with arbitrary symmetric-key protocols is possible
for a specific flavor of Multi-Stage-secure protocols, namely those that provide key independence and
stage-j forward secrecy, when composed with a symmetric-key protocol at a forward-secret, final stage.
Unfortunately however, for key-dependent or non-forward-secret multi-stage key exchange protocols, such
a generic composition result seems hard to achieve or even impossible, as we will see later.

Moreover, the authentication property of the multi-stage key exchange influences the security guar-
antees our composition result is able to provide. While mutual authentication yields security for an
unrestricted composition with a symmetric-key protocol, in the case of unilateral authentication, security
can only be guaranteed if the composition with the symmetric-key protocol is not applied in the trivial
attack scenario, where the adversary impersonates the unauthenticated initiator in the key exchange phase.
We state our composition result in terms of mutual authentication, and discuss afterwards how (and why)
it extends to the unilateral case.

3.1 Preliminaries

In order to reason about composition of key exchange and symmetric-key protocol games, we employ the
syntax for composed games (adapted to the multi-stage setting) as well as the notion of session matching
introduced by Brzuska et al. [BFWW11, Brz13], which we briefly summarize in the following.

Composed games for multi-stage key exchange. Let GKE be a game modeling security for a (multi-
stage) key exchange protocol KE and GΠ a security game for some symmetric-key protocol Π, then GKEi;Π

is defined as the security game for the composition KEi; Π of KE and Π where, whenever a session key Ki
is accepted in stage i of KE, this key Ki is registered as a new key in the symmetric-key protocol game
GΠ, allowing the adversary to run Π sessions with this key (and all previously registered keys). In GKEi;Π,
the adversary’s task is to break the security of Π given access to both the queries of GKE and GΠ, which
the composed game essentially just relays to the appropriate subgame. Exceptions to this are the key
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registration queries of GΠ (that are only executed by the composed game to register stage-i keys within
GΠ whenever such a key has been accepted), the Reveal query of GKE (which the adversary is not allowed
to query for stage-i keys in the composed game6, as session key compromise for these keys is—if at all—
captured in GΠ), and the Test query of GKE (being only of administrative purpose for GKE). The adversary
wins in the composed game, if it, via its queries, succeeds in the subgame GΠ.

Session matching. For composability, an additional property named session matching is required. A
key exchange protocol KE allows for session matching, if there exists an efficient algorithm that, when
eavesdropping on the communication between an arbitrary adversary A and the security game GKE, is
able to deduce which sessions are partnered at each point of the communication. We refer to Brzuska et
al. [BFWW11] for definitional details and that (some form of) session matching is in fact necessary for
arguing about compositional security.

3.2 Compositional Security

We are now able to state our composition result. Informally, a multi-stage key exchange protocol KE
composes securely with an arbitrary symmetric-key protocol Π using the session keys of some stage i,
if the key exchange is key-independent and stage-j-forward-secret for j ≤ i with mutual authentication,
allows for an efficient session matching, and the stage-i keys are final. With final keys in stage i (or: final
stages i) we refer to those keys established after the last key exchange message has been exchanged (K2

in QUIC).7 Note that keys derived prior to the final message exchange might be used in generating some
key exchange messages and are thus not amenable to truly generic composition: such keys cannot provide
security in, e.g., a symmetric-key protocol Π whose security is defined as an adversary being unable to
forge the server message of a QUIC key exchange (as an adversary can simply replay such a message from
the key exchange in the composed game).8

Theorem 3.1 (Multi-stage composition) Let KE be a key-independent stage-j-forward-secret Multi-Stage-
secure key exchange protocol with mutual authentication, key distribution D, and an efficient session match-
ing. Let Π be a secure symmetric-key protocol w.r.t. some game GΠ with a key generation algorithm that
outputs keys with distribution D. Then the composition KEi; Π for final stages i ≥ j is secure w.r.t. the
composed security game GKEi;Π and for any efficient adversary A we have

Adv
GKEi;Π

KEi;Π,A ≤ ns · Adv
Multi-Stage,D
KE,B + AdvGΠ

Π,C

for some efficient algorithms B and C, where ns is the maximum number of sessions in the game GKEi;Π

(i.e., the size of the set LABELS of used labels).

Proof (Theorem 3.1). The proof proceeds similar as the one for composition of classical Bellare–Rogaway-
secure key exchange protocols given by Brzuska et al. [BFWW11]. First, we gradually replace each session
key derived in stage i of KE by a randomly chosen value and show that, if an adversary is able to distinguish
this, we can break the Multi-Stage security of KE. Once all keys are replaced by random ones, the composed
game is actually independent of the key exchange protocol (as the now randomly chosen final stage-i keys

6Note however that keys in stages different from i, not being used for Π, are still accessible via Reveal queries in GKEi;Π.
7The notion of final keys can be formalized in our model through the sequence of special Send(·, continue) queries (without

further message output) at the end of a session run. A similar query can be used to enable the adversary to trigger the final
key computation after the last protocol message has been sent (in QUIC: after the server sent its message).

8In principle, our composition result can cover not only final, but any unused stage-i key. We refrain from capturing this
more complex notion of non-usage of keys here.
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are not used within the key exchange), thus breaking it is equivalent to breaking the symmetric-key protocol
Π directly.

For the first part, a hybrid argument is applied. Let GλKEi;Π denote a game that behaves like GKEi;Π,
except that for the first λ accepting sessions in stage i (where the partnered session has not yet accepted

this stage), instead of the real session key Ki a randomly chosen K′i
$← D is used in the subsequent execution

of Π. Obviously, G0
KEi;Π

= GKEi;Π while GnsKEi;Π denotes the game where all keys for the Π subgame are
chosen at random from D. Applying Lemma 3.2 below, we have that both games are indistinguishable
due to the Multi-Stage security of KE and it holds that∣∣∣∣AdvG0

KEi;Π

KEi;Π,A − Adv
GnsKEi;Π
KEi;Π,A

∣∣∣∣ ≤ ns · AdvMulti-Stage,D
KE,B .

As GnsKEi;Π uses only randomly chosen keys which are completely independent of the ones derived in
the key exchange protocol, we can, by Lemma 3.3 below, bound the advantage of A in GnsKEi;Π by the
advantage of an adversary in the security game GΠ of Π. Since Π is assumed to be secure w.r.t. GΠ, we
can conclude that KE; Π is secure w.r.t. GKEi;Π. �

The following lemma establishes the hybrid argument required in the proof of Theorem 3.1.

Lemma 3.2 Let KE be a key-independent stage-j-forward-secret Multi-Stage-secure key exchange protocol
with mutual authentication, key distribution D, and an efficient session matching. Let Π be a symmetric-
key protocol with a key generation that outputs keys with distribution D. Then for i ≥ j, all λ = 1, . . . , ns
(where ns is the maximum number of sessions in GKEi;Π) and any efficient adversary A we have∣∣∣∣AdvGλ−1

KEi;Π

KEi;Π,A − Adv
GλKEi;Π
KEi;Π,A

∣∣∣∣ ≤ AdvMulti-Stage,D
KE,B .

for some efficient algorithm B.

For simplicity we provide B with λ as auxiliary input. As already noted in [BFWW11] letting B pick
λ at random in the interval [1, ns] suffices to prove the hybrid argument.

Proof (Lemma 3.2). We construct algorithm B using the adversary A against GKEi;Π in such a way
that, if A has a non-negligible difference between the advantage in Gλ−1

KEi;Π
and GλKEi;Π, then B will have a

non-negligible advantage in GMulti-Stage,D
KE,B .

When simulating GKEi;Π for A, algorithm B forwards most KE-related queries to its game GMulti-Stage,D
KE,B

while answering queries to the GΠ subgame on its own, using the stage-i keys received from GMulti-Stage,D
KE,B .

To this extent, B keeps a list with all stage-i session keys in use, denoted as a mapping SKEY : LABELS→ D,
in order to simulate the Π instances using these keys. Additionally, B keeps a counter c, initialized as
c = 0, indicating the number of session keys replaced by random values so far. Queries related to KE
issued by A are handled by B as follows:

• NewSession, NewTempKey, Reveal, and Corrupt queries are forwarded to GMulti-Stage,D
KE,B and the re-

sponses sent back to A. Note that, as KE is stage-j-forward-secret for j ≤ i, session keys in stage
i are established in a forward-secret manner and thus Corrupt queries do not affect the security of
spawned Π instances at that stage. Moreover, as KE is key-independent, Reveal(label, i′) queries
allowed for stages i′ 6= i in the composed game at no time affect the state of session keys in stage i.
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• Send(label,m) queries are forwarded to GMulti-Stage,D
KE,B as well and the responses sent back to A.

Additionally, if GMulti-Stage,D
KE,B changes to state acceptedi, the following steps are taken.

First, B checks whether label is partnered with some other label label′. This is efficiently computable
as KE allows for an efficient session matching. In case label is partnered, SKEY(label) is set to
SKEY(label′) and A provided with an identifier for SKEY(label) in GΠ. Here, the Match security
of KE ensures that whenever two partnered sessions accept, the established keys are identical with
overwhelming probability.

If label is not partnered, B increases the counter value c by 1 and provides A with an identifier for
SKEY(label) in GΠ, where this value is computed depending on the counter c:

– If c < λ, then sample SKEY(label)
$← D at random.

– If c = λ, then issue a Test(label, i) query and store the resulting value in SKEY(label).

– If c > λ, then issue a Reveal(label, i) query and store the resulting value in SKEY(label).

Note that B checks for partnered sessions in stage i and thus never tests revealed keys (and vice versa).

In this way, it obeys condition 2 of GMulti-Stage,D
KE,B in Definition 2.2.

Eventually, A terminates. Algorithm B then terminates as well and outputs 1 if A has won in the
composed game (i.e., in the GΠ subgame that B simulates on its own) and 0 otherwise. That way, if the
Test query made by B returns the real session key, B perfectly simulates Gλ−1

KEi;Π
for A, whereas, if a random

key is returned, B perfectly simulates GλKEi;Π. In the case that btest = 0 in GMulti-Stage,D
KE,B , B thus outputs

the wrong bit with probability Adv
GλKEi;Π
KEi;Π,A while, if btest = 1, B outputs the right bit with probability

Adv
Gλ−1

KEi;Π

KEi;Π,A. Therefore, we can conclude that the advantage of B in winning the game GMulti-Stage,D
KE,B is

AdvMulti-Stage,D
KE,B ≥

∣∣∣∣AdvGλ−1
KEi;Π

KEi;Π,A − Adv
GλKEi;Π
KEi;Π,A

∣∣∣∣ .
�

It remains to show how an adversary in the hybrid game GnsKEi;Π, where all session keys in the GΠ sub-
game are replaced by random ones, can be reduced to an adversary in security game GΠ of the symmetric-
key protocol.

Lemma 3.3 Let KE be a multi-stage key exchange protocol with stage i being final. Let Π be a secure
symmetric-key protocol w.r.t. some game GΠ with a key generation algorithm that outputs keys with dis-
tribution D. Let ns be the maximum number of sessions in GKEi;Π. Then for any efficient adversary A we
have

Adv
GnsKEi;Π
KEi;Π,A ≤ AdvGΠ

Π,C

for some efficient algorithm C.

Proof (Lemma 3.3). We let algorithm C simulate the entire composed game GnsKEi;Π for A, computing the
outputs of the key exchange subgame on its own while forwarding any Π-related query to its game GΠ.
This is possible, as the keys established in the key exchange stage i are final (i.e., unused in KE), hence
independent of the protocol part, and thus C is indeed able to provide a perfect simulation for A. In the
end, if A wins in the simulated game, C will have won in its game GΠ as well, establishing the desired
equation.

Formally, C only has to handle Send queries to the key exchange game in a special way. Although all
session keys used in the protocol stage are uniformly distributed, C needs to distinguish two cases when a
session key is accepted in the key exchange:
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• If the accepting session is partnered, C instructs GΠ to register the same key as for the partnered
session and returns the according key identifier to A.

• Otherwise, C simply queries GΠ for an identifier of a new (randomly distributed) key chosen by GΠ,
which it relays to A.

All other queries are handled by C in an unmodified way, either by simulating them on its own (in the case
of key exchange queries) or by forwarding them to GΠ (in the case of protocol queries).

AsGΠ samples keys randomly and C ensures consistency in the cases of partnered sessions, its simulation
of GnsKEi;Π for A is perfect. Since C forwards all protocol queries of A unaltered to GΠ, if A succeeds in the
composed game, C wins in GΠ. �

Remark. Note that, although our composition result from Theorem 3.1 focuses on composition with a
single symmetric-key protocol at some (forward-secret) stage i, it readily extends to concurrent composition
with one (or several) such protocols at multiple forward-secret, final stages. The reason for this is that
in the composition game GKEi;Π, the adversary is allowed to issue Reveal queries for all stages except i,
i.e., the game captures arbitrary compromises of session keys at other stages and therefore using a specific
symmetric-key protocol cannot endanger the stated compositional security.

Composition with unilateral authentication. As aforementioned, unilateral authentication in the
key exchange phase prevents our composition theorem to hold unconditionally. The reason for this is that,
when we are gradually replacing real by random keys in our proof, we depend on issuing Test queries for
those keys. However, a Test query is prohibited for responder sessions without partners in the case of
(responder-authenticated) unilateral authentication, as such queries would trivially rule out security in a
scenario where the adversary can impersonate the unauthenticated communication partner.

Since multi-stage key exchange protocols with unilateral authentication do not provide protection
against such attacks, our composition cannot consequently provide any protection either in these cases.
However, if one restricts the composition in such a way that sessions of the symmetric-key protocol cannot
be spawned in the trivial attack scenario (i.e., if the accepting session in stage i has role = responder, but
is not partnered with a genuine initiator), then Theorem 3.1 is easily adaptable to such a composition.
Particularly, in Lemma 3.2, the problematic Test queries are not needed anymore as the reduction does
not have to simulate a protocol session in these cases. Therefore, our composition result extends to this
case straightforwardly.

Barriers for generic composition results. Except for the mutual authentication requirement (which
can be relaxed to unilateral authentication as illustrated above), our composition theorem also relies on the
multi-stage key exchange protocol being both key-independent and stage-j-forward-secret. We were unable
to weaken these requirements and it seems to us hard to show general compositional security properties
without these properties, as we briefly discuss in the following.

• Non-forward-secret stages: In our hybrid argument in the proof of Theorem 3.1, we depend on the
forward secrecy of stage i at which instances of the protocol Π are spawned. More precisely, this
property ensures, that Corrupt queries of adversary A do not affect our simulation of Π instances
that have already been spawned, thus allowing us to gradually key these protocols with a random
instead of the real key.

If, in contrast, stage i would not be forward-secret, a Corrupt query would allow A to compute all
established session keys, including the one in stage i. Therefore, A could potentially immediately
check whether the respective Π session really uses the correct session key and abort, when it detects
that we replaced the key with a random one in our hybrid game, rendering our simulation invalid.
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Client C Server S
server’s static public key pkS , [nonceS ] server’s static secret key skS

generate ephemeral keys eskC , epkC
generate nonceC

D1 = DH(eskC , pkS) D1 = DH(epkC , skS)

PRK1 = KDFext(D1, nonceC , [nonceS ]) PRK1 = KDFext(D1, nonceC, [nonceS ])

K1 = KDFexp(PRK1, info1) K1 = KDFexp(PRK1, info1)

use temporary keys tskS , tpkS

D2 = DH(eskC , tpkS) D2 = DH(epkC , tskS)

PRK2 = KDFext(D2, nonceC , [nonceS ]) PRK2 = KDFext(D2, nonceC, [nonceS ])

K2 = KDFexp(PRK2, info2) K2 = KDFexp(PRK2, info2)

nonceC , [nonceS ], auxC , epkC

{auxS , tpkS}K1

Figure 3: Expanded description of protocol run of Google’s QUIC with 0-RTT handshake.

• Key dependence: In the proof of our composition theorem, key independence of the multi-stage key
exchange guarantees that Reveal queries for session keys Ki′ of stages i′ 6= i do not affect the session
keys in stage i, that we are gradually replacing by random ones.

Indeed, if the key exchange would be key-dependent, revealing a session key of stage i′ < i before the
key of stage i′ + 1 is established would lead to all keys in this session getting revealed, including the
to-be-replaced key Ki. Thus, when B replaces the real Ki by a randomly chosen one, A is potentially
able to determine this and abort, rendering our simulation invalid.

Note that, moreover, we cannot get rid of Reveal queries for session keys Ki′ of stages i′ 6= i in
our simulation without sacrificing concurrent composition of the multi-stage key exchange protocol
with several symmetric-key protocols at multiple stages. We can either implicitly obtain concurrent
composition by allowing A to arbitrarily compromise session keys of stages i′ 6= i (which is what
we do) or explicitly simulate the composed symmetric-key protocol on each stage ourself. In the
latter case, though, in order to be able to correctly simulate the protocol for some stage, we would
need to reveal the according session key ourself, i.e., issue exactly those Reveal queries that required
key-independence in the first place.

4 Security Analysis of Google’s QUIC Protocol

In this section we analyze the QUIC protocol from a cryptographic point of view. Before, we give a more
detailed description of QUIC and describe how protocol steps are reflected in our modeling of the protocol.

4.1 A QUIC Tour

Let us recall the typical protocol run of the QUIC handshake shown in Figure 1 and in an expanded form
in Figure 3. Recall that in the core protocol the client first sends an ephemeral Diffie–Hellman (DH) key
from which the first session key K1 is derived with the static DH key of the server, before the key K2 of
the second stage is derived when the server sends a temporary DH key over the K1-secured channel. The
key K2 is then computed as the DH key of the two ephemeral keys.

Channels. Note that the key K1 may be used to transmit payload data before it is used to establish K2.
In fact, the K1-protected channel may still be used after the server has sent its share for K2. The reason
is the unreliable transmission via UDP, i.e., the ephemeral key may be delivered later than expected or
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even get lost. The actual channel protocol is not specified in [Ros13, LC13], only references to possible
authenticated encryption algorithms are given, supporting the usefulness of our composition theorem. We
also remark that it turns out that for the security of the key exchange protocol we only need authenticity
of the server’s hello message, not confidentiality.

Certification. The main protocol is surrounded by some means to ensure that the server’s static key
pair is available and certified. Binding of keys to server identities is ensured by certification of public keys,
potentially including revocation mechanisms. For the sake of simplicity, and in compliance with various
similar efforts, we leave this part out of the security proof.9 Hence, we presume that valid binding of static
keys is ensured as a part of the security game in the sense that the assignment of public keys to parties is
known by default.

If the client is currently not in possession of the server’s public key it may start the interaction with
an “inchoate” client hello. Upon receiving such a message, the server forwards its public configuration,
possibly including the certificate and further information. We omit this part of the key retrieval in our
modeling of the protocol, since we assume known binding of public keys to servers anyway.

Format of handshake messages. To prevent replay attacks, QUIC employs the common countermea-
sure and uses nonces. However, because of the restriction of zero round-trip time, one cannot expect the
server to contribute to the nonce, and must rely on the user to generate good nonces. To sustain security,
QUIC assumes that the server uses a so-called “strike-register” in which previously seen nonces are stored.
Several severs within a so-called “orbit” are supposed to share such a register. A nonce is thus assumed
to consist of a time stamp, an orbit identifier, and 20 random bytes; the designers of QUIC estimate that
32 bytes should be sufficient.

If a connection with a client-generated nonce fails, because the server finds an entry in the strike
register, then the server rejects, but provides a server-generated nonce, encrypted and authenticated under
some private server key. If the server then recognizes such a server nonce in a subsequent, fresh 0-RTT
connection retry, it can check that it is authentic. We simply write nonceC for the nonce eventually used
by the client, and [nonceS ] for the (optional) server nonce. Because of the strike registers, we presume in
our protocol abstraction that any honest server accepts any client nonce only once.

Handshake messages are tagged, e.g., the client resp. server hello message in the handshake phase carry
special tags CHLO and SHLO, and may contain further information like the version numbers. However,
many of these entries are optional and do not directly contribute to the cryptographic strength of the key
exchange step (except that they enter the key derivation step in a non-critical way, see below). We thus
simply write aux for these data, with a subscript for the corresponding party.

Key derivation. Key derivation is performed via HMAC with SHA-256, as specified by NIST SP800-
56C [Che11]. This is a two-stage derivation process. In the first extraction step via function KDFext one
computes a pseudorandom master key PRK from the corresponding Diffie-Hellman key, using the client
nonce and possibly the server nonce as a salt input. In our security proof we model this extraction function
as a random oracle.

In the second expansion step, one derives client and server write keys and IV values by expanding the
PRK via KDFexp. Here, the input are the client hello message, the (public) server configuration, and a
label distinguishing the first-stage key (“QUIC key expansion”) from the second-stage key (“QUIC forward
secure key expansion”). We denote these data by info1 and info2, respectively. Note that they are both

9There are only a few exceptions where the certification process has been considered to be an integral part of cryptographic
protocol, e.g. [BFPW07, FW09, BCF+13], where the latter one deals with key exchange explicitly.
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determined given the client’s ephemeral key, the nonces, the auxiliary data and the stage number. We
assume in our analysis that KDFexp is a random oracle, too.

Session identifiers and partners. For the analysis we also need to specify the intended partners and
the session identifiers. Since clients are not authenticated in QUIC, we assume that the responder in an
execution, i.e., the server, sets the partner identity label.V to ‘*’. The client on the other hand sets the
partner entry to the identity of the server specified through the public key. As for session identifiers, for both
parties we let sid1 = info1 and sid2 = (info1, {auxS , tpkS}K1), where the latter value is the authenticated
ciphertext sent by the server. Note that the session identifiers are only set to these values once the
corresponding party accepts, and are ⊥ otherwise. We remark that auxC , containing the used server
configuration’s ID, together with the verified certification of the server configuration uniquely identifies
the full configuration used in the key derivation. Furthermore, observe that info1 and info2 can be derived
mutually from another, as they only differ in some constant labels.

4.2 Cryptographic Analysis of QUIC

For the security proof we will rely on the random oracle model and the Gap-Diffie-Hellman problem [OP01],
like many other DH-based key exchange protocols, e.g., [JP02, KP05, LM06, DF11] to name a few. The
property basically says that solving the (computational) DH problem remains hard, even having access to
a decisional oracle DDH(X,Y, Z) which returns 1 if and only if DH(X,Y ) = Z. Formally, for an adversary
A we denote by AdvGapDH

G,A the probability that A solves the following problem: On input the description
of the group G of known prime order q, together with a generator g of G, and random X,Y ← G, the task
is to find Z such that Z = DH(X,Y ), when given access to oracle DDH(·, ·, ·).

Besides the underlying number-theoretic problem, we also need security of the channel protocol which
is used for the server hello message. Since we only need authenticity, we can simply define security as
follows: We denote by AdvAuth

{·},A the probability that adversary A, when allowed to query the channel oracle
{·}K for a random key K at most once, is able to create in an attempt a channel message (not returned
by the oracle) such that decryption under K yields a valid message. Note that we merely require one-time
authenticity because we analyze QUIC as a key exchange protocol only, assuming that no payload data
are sent by the client in the first stage. Full security would ideally follow from our compositional result;
alas, QUIC is not key-independent. We note that one could extend our analysis to a monolithic proof of
the security of the stage-two key if one assumes adaptive multi-query authenticity of the channel protocol.

Theorem 4.1 (Match security of QUIC) For any adversary A we have responder-authenticated uni-
lateral Match-security, i.e., AdvMatch

QUIC,A ≤ n2
s/q, where ns is the maximal number of initiated sessions and

q denotes the size of the group G.

Proof (Theorem 4.1). We need to show the four properties of Match-security. For the first one, preventing
that two sessions (of the same stage) accept with identical (and valid) session identifiers label.sidi =
label′.sidi, but different session keys, note that identical session identifiers in QUIC (at either stage) imply
that the input to the key derivation functions are identical, too. Hence there cannot exist stages with
identical session identifiers but different keys.

The second property of Match-security describes the impossibility of having identical session identifiers
but the client thinking that it communicates with a different server (i.e., label.V 6= label′.U). Note that
the server’s public key in QUIC is part of both session identifiers and that the identity can be reliably
deduced from the key resp. the certificate by assumption, thus the property holds.

The third property demands that session identifiers are distinct across different stages. This is imme-
diately satisfied by sid2 containing more elements than sid1.
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Finally, for the fourth property, three sessions with identical session identifiers, note that the probability
that two sessions of honest clients create the same random ephemeral key is at most n2

s/q by the birthday
bound. Here we use that corrupting a user terminates the interaction with the session such that, in
particular, that session does not generate session identifiers. Given that no such collision occurs, the three
sessions in question must include two sessions of honest servers. But the client nonce, appearing both in
sid1 and in sid2, contains the server’s orbit and this value also enters the session identifier. Hence, the two
servers in the same orbit must have accepted the same client nonce twice, contradicting our assumption
about the strike registers. �

Theorem 4.2 (Multi-Stage security) In the random oracle model QUIC is a (responder-authenticated)
unilateral, key-dependent, stage-2-forward-secret key exchange protocol such that for any efficient adversary
A there exist efficient algorithms B and C with

AdvMulti-Stage
QUIC,A ≤ 2ns ·

(
(nsnu + nsnt) · AdvGapDH

G,B + (2qh + 4qhns) · 2−min{|PRK1|,|PRK2|} + ns · Advauth{·},C
)
,

where ns is the maximal number of sessions, nu is the maximal number of users, nt is the maximal number
of temporary keys generated, and qh is the total number of random oracle queries of the adversary.

Proof (Theorem 4.2). First, we may consider the case that the adversary makes a single Test query only.
This can decrease the success probability by a factor at most 1/2ns by a hybrid argument replacing as
there are at most 2ns keys. From now on we can therefore speak of the tested session. Recall further that
for an admissible Test query in a responder-authenticated unilateral protocol, the query must be either
for an initiator session (i.e., for a client in QUIC), or for a partnered server session such that the client’s
ephemeral public key originates from a session of an honest client.

Stage-1 secrecy. Consider first the (non-forward) secrecy of the session keys of the first stage. We can
bound the adversary’s success probability to distinguish the keys from random by (a) the probability that
the adversary queries the random oracle KDFext about the DH key (specified through the session identifier
of the tested session), plus (b) the conditional probability that A succeeds given that it has not queried
KDFext about the key before. In the latter case, the corresponding value PRK1 is an unknown random value
for the adversary. Furthermore, since the adversary cannot reveal the session key in partnered sessions
and keys for other session identifiers are distributed independently, distinguishing the derived test session
key from random is then given by the (pseudo)randomness of KDFexp. To be precise, we can bound the
adversary’s advantage by its number of queries to the random oracle in proportion to the size of possible
PRK1 values, i.e., by qh · 2−|PRK1|.

The former probability of making the query to KDFext about the DH value can be bounded in terms
of the GapDH problem, along the arguments for similar protocols, e.g. [JP02, KP05, LM06, DF11]. That
is, one guesses two sessions, one being a client session, the other one being a server session, and injects
the given challenge values X,Y of the GapDH problem into the client’s ephemeral key and the server’s
static public key. The hope is that these sessions will correspond to the Test query, which is either for a
client session, or for a server session, but which is then partnered to the (hopefully correctly predicted)
client session and key. If the adversary makes the random oracle query about the DH key of the two
values, then we can solve the DH problem. Here, in the course of the simulation, the server’s long-term
key may be used in another session, in which we could not derive the corresponding DH key. Using the
same technique as in previous works, we leverage the decisional DH oracle to simulate the random oracle
via implicit representation of DH tuples.

More formally, we build a reduction B to the GapDH problem as follows. We are given G, g and two
random group elements X,Y and are supposed to compute Z = DH(X,Y ) with the help of a decisional
oracle DDH(·, ·, ·). We initially guess one of the at most ns executions and one of the at most nu server keys
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at random. We will use X in the predicted execution as the honest client’s ephemeral key (and abort if the
session starts but is not by a client nor by an honest party), and analogously use Y as the server’s long-term
public key. Run now the attack of the stage-1 adversary by emulating the honest parties’ behavior, with
the only exception that honest parties sometimes need to skip hash computation and instead maintain an
implicit representation. This is necessary in the case that the injected keys appear and we cannot compute
the DH values on behalf of the honest parties. We will match this list against the explicitly computed
hash values by the adversary. Note that the adversary will be oblivious about this structural modification,
as we still simulate the random oracle as before and the input/output behavior of the honest parties are
statistically indistinguishable from its point of view.

To simulate the execution we maintain an initially empty list and use it as follows to compute hash
answers for both stages:

• If the adversary makes a hash query to the extraction random oracle KDFext about (D, nonceC ,
[nonceS ]), then we return a (consistent) random answer PRK via lazy sampling, i.e., where we answer
previous queries as before and pick a fresh value for a new query. Next we check if we can update our
list by searching for entries ({A,B}, nonceC , [nonceS ], info, ∗,K) with DDH(A,B,D) = 1 and where
the value for PRK has not been set yet.10 Note that we can check for this efficiently since the size of
the list will be bounded by the number of sessions, and each element can be checked easily with the
help of the decision oracle. If we find such an entry then we set the wildcard ∗ to PRK.

• If the adversary makes a query (PRK, info) to the expansion random oracle KDFexp we first search
for entries ({A,B}, nonceC , [nonceS ], info,PRK,K) with matching entries for info and PRK in our list.
If we find such an entry then we return K. Else we answer (consistently) as the random oracle would.

• If a (simulated) honest party is supposed to compute a K for group elements A and B, nonces
nonceC and [nonceS ], and execution information info, then we proceed as follows: If the party could
compute the DH key D itself we do so and proceed as in the adversarial cases above, possibly updating
information in our list. If the party could not compute the DH key, say, because it involves the injected
server’s long-term key Y , then it searches for an entry ({A,B}, nonceC , [nonceS ], info,PRK|∗,K) in the
list (where ‘PRK|∗’ stands for ‘either PRK or ∗’) and subsequently uses K. If there is no such entry
then it picks K at random for subsequent usage, and adds an entry ({A,B}, nonceC , [nonceS ], info, ∗,K)
to the list.

The list strategy basically allows the reduction to implicitly set the PRK value and adjust it later. An
inconsistency can happen if the adversary asks the expansion oracle KDFexp about a value (PRK, info) to
receive a key K, before having received PRK as a reply from the extraction oracle KDFext. If we later set
the wildcard ∗ in our list to that value PRK but for a different key, then this does not match the adversary’s
expectation. However, since the value PRK is chosen at random, the probability that this happens among
the at most qh random oracle queries of the adversary and the at most 2ns list entries (of both stages) is
at most 2qh · ns · 2−min{|PRK1|,|PRK2|}.

Recall that we assume that the adversary makes a hash query to derive PRK1 in the Test session. We
can check for all queries via the decisional oracle if this has already happened; if so we can output the
correct value and solve the GapDH problem in this case. Also observe that the Test session must be either
between an honest client and an uncorrupted server, or that the server must be honest and the client’s
ephemeral must origin from an honest client. Therefore, given that the simulation does not generate
any inconsistency, our simulation is perfectly indistinguishable from an actual attack of the adversary’s

10Here, and also below, the optional server nonce [nonceS ] should only be used in the list operations if it also appears in the
hash query, e.g., if the adversary queries about (D, nonceC) then we also search the list for entries ({A,B}, nonceC , info, ∗,K).
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viewpoint. In particular, the Test session then uses our injected keys X,Y with probability at least 1
ns·nu ,

allowing us to solve the GapDH problem in this case.
Finally, to complete the argument, note that the adversary cannot succeed by hoping that another

session with different session identifier sid′1 yields the same input (PRK1, info1) to KDFexp. This would
potentially allow the adversary to Reveal that session key and distinguish the tested key from random.
The reason is simply that the session identifier information completely enters the key derivation and the
session keys of distinct sessions are thus distributed independently.11

Stage-2 forward secrecy. To show stage-2 forward secrecy, we distinguish again between the cases
that the adversary queries the random oracle about the DH key of stage 2, and that it does not (in which
case the randomness of PRK2 ensures security of the session keys again with a bound of qh · 2−|PRK2|). For
the first case, however, we have to apply a more fine-grained case distinction now. To this end, we first
show that the adversary essentially cannot inject its own temporary key into the server’s hello message;
else this would clearly violate security. For this we argue that the first stage key K1 of the tested client
session with label label still looked random to the adversary when the server hello message has been sent
but not yet received. This follows as above and from the following three properties:

1. Because of the key dependence, the adversary cannot learn the key K1 via a Reveal(label, 1) query to
the test session; such queries are prohibited before the key K2 has been established.

2. For the same reason, key dependence, the adversary cannot learn K1 by revealing the key of a session
label′ which is partnered according to the stage-one session identifier (label.sid1 = label′.sid1). Any
such reveal request would make K1 and K2 in the tested session revealed, according to the Reveal
query in which keys for partnered sessions are set to revealed for the current and all subsequent
stages.

3. Corruptions of the test session’s party could only have happened after K2 has been established.

Since K1 has looked fresh, we can then argue along the authenticity of the K1-channel. The adversary either
gets to see one or none channel message for the fresh key K1 (depending on whether there is a partnered
session to label), and needs to break the authenticity if it manages to send a new valid ciphertext. This is
bounded by advantage Advauth

{·},C times the factor to guess the right sessions again.
More formally, we consider the probability that the adversary in the attack sends to the (honest) client

in an execution for info1 a ciphertext which the client does not reject but which has not been created by
the (honest) server, as specified in info1. Note that this comprises the case that the adversary tries to
forge an authentic ciphertext from scratch, or that it has forwarded the client’s first message to the server
and got a different, valid ciphertext as reply. We bound this probability by the advantage of an adversary
against the authenticity of the channel protocol.

Our adversary C against the channel basically simulates the honest parties for the key exchange attacker
with one exception: It initially selects one of the at most ns client sessions (with identifier info1) at random
and waits for an honest server session in which the client has sent nonceC , auxC , and epkC of info1 and is
supposed to answer using the key K1. Note that by the strike registers this server session is uniquely
determined. Our adversary prepares the server’s answer according to the protocol, e.g., using its current
temporary key, but then eventually calls its external channel oracle to create the authenticated ciphertext
(under a fresh key). If the adversary against the key exchange protocol sends a reply to the predicted
client session involving the same data info1, then we output this ciphertext as a potential forgery.

By the argument for stage-1 security, and the fact that the adversary cannot learn key K1 in session info1

by other means like Reveal queries because of key dependence, it follows that using the fresh key instead

11The derived keys may be identical by chance but this does not violate our analysis.
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of K1 cannot influence the adversary’s success probability significantly. Intuitively, one may think of K1

as having been replaced by the random value used in the game AdvAuth
{·},C . Hence, a key-exchange adversary

as above would essentially win with the same probability as in game AdvAuth
{·},C , times the probability ns for

predicting the client session.
We conclude that we can from now on reject any attempt in which the key-exchange adversary sends to

an honest client a new ciphertext which has not been created by an honest server. The adversary can thus
only relay the second messages between an honest client and an honest server. In such an execution we can
again inject the GapDH challenge X,Y into the client’s ephemeral public key and the server’s temporary
public key. Only this time, we have to guess one session and the right temporary key used by the server,
instead of one session and the right (long-term secret of a) user, yielding a factor ns · nt instead of ns · nu.
Note that Corrupt queries for the server only disclose the long-term secret, but not the temporary key by
convention. Hence, we can carry out the same reduction to the GapDH problem as above.

The final step, as in the stage-1 case, is now to argue that there cannot be another session with identifier
sid′2 = (info′1, C

′) 6= sid2 = (info1, C) such that the inputs to the derivation function KDFexp are identical.
Recall that each info1 contains the client’s ephemeral public key and that it corresponds uniquely to some
info2. Hence, a difference in info′1 6= info1 would immediately yield different inputs info′2 6= info2 to KDFexp

in the protocol. If, on the other hand, info′1 = info1 then the two ciphertexts must differ. Because of the
strike registers on the server’s side the ciphertexts can only differ if one has been created by the adversary
for the same stage-1 key. In this case, however, we would have rightfully rejected the ciphertext such
that the client would not have derived the session key K2. It follows that only the partnered sessions can
have the same input DH(epkC , tpkS) and info2 to KDFexp, implying that the key in the test session is
independent of all other keys (except for the keys of partnered sessions).

The claim now follows. �

4.3 QUICi — A Key-independent Version

Recall that our composition theorem (in the unilateral version) only applies to key-independent schemes,
where QUIC, as is, does not satisfy this property. It is, however, quite easy to change QUIC into a key-
independent version. With the modification to QUICi we can then argue security of, say, the composition
of QUICi with a secure channel protocol for the second stage.

Recall that, in the key-independent case, the adversary is allowed to Reveal the session key of a stage,
before the session key of the next stage has been established. The idea for QUIC is similar to TLS, where
the resumption key is derived from the established master secret (from which the previous session keys
have been computed). For QUICi , one would simply derive two secret values K1 and preK2 in the KDFexp

step of the key derivation in the first stage, where K1 is still the first stage’s session key and preK2 is kept
secret and subsequently input to the key derivation in the second stage. Any Reveal query would then
disclose the session keys, but not preK2. It should thus be hard to compute the second-stage session keys
given only the previous session keys.12 We stress that this change does not impose additional expensive
state to be kept by the server: As apparent from Figure 3, the server computes K2 immediately after
deriving K1 and must anyway keep a small state between the two KDF invocations.

4.4 A Note on 0-RTT Security

We highlight a specific security aspect of QUIC’s approach to establish secure connections in 0-RTT which
is, by its nature, not coverable in our model. Remember that, for a 0-RTT connection establishment to be

12Note that, if we allow session state reveals, then the key PRK could still be disclosed, of course. The idea here therefore
protects against bad usage of the session keys in the channel (modeled through Reveal queries), but not against disclosure of
ephemeral randomness.
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achievable, the client has to speculate that the server still uses a previously known public key. If this is not
the case then the server will reply with an updated server configuration (and key), allowing the client to
retry the connection establishment. Note however that, in order to benefit from the 0-RTT key exchange,
the QUIC specification states that the client indeed “must start sending before waiting for the server’s
reply” [LC13] and rekeying with K2 takes place. In such a scenario, it therefore has to be assumed that
some data will be sent under a (non-forward-secret) key K1 computed using the outdated server public
key.

So far, this is not surprising and, as our model treats non–forward secrecy including corruptions, it
accurately indicates that no security guarantees can be given for the data encrypted under that K1 if the
adversary learns the outdated server public key (i.e., corrupts this server identity). What we however
cannot model in a precise cryptographic sense is the following attack: Assume that an active adversary
learns a server’s static secret key, and that this security breach is discovered, leading this server to generate
a new configuration and key pair. In the scenario depicted above, the client aiming to talk to the server
(referring to the server as a real instance, not as the identity behind a public key) will use the outdated
public key for connection establishment. Therefore, an active adversary will be able to impersonate the
server (in the real-world sense) using the corrupted static key, which the client believes still belongs to this
server.

We stress that the fact that our model cannot represent this attack, although it constitutes a potential
vulnerability, is not a weakness of our model, but rather reflects a mismatch between the real-world entity
a client aims to communicate with and the outdated cryptographic identity employed for this purpose.
This attack obviously can be mitigated by employing strong binding between real-world and cryptographic
identities using, e.g., timely certificate revocation. However, such means would naturally influence the low-
latency timing properties QUIC specifically aims for with 0-RTT connections. At this point, we leave it
open to discussion whether or not the outlined potential vulnerability is a fair price to pay to achieve this
goal.

5 Conclusion

Our work introduces a model to reason about the security of multi-stage key exchange protocols. The
notion enables us to assess Google’s new QUIC protocol and to confirm its intended security properties as
a key exchange protocol. This, in itself, is already a useful result to support the faith in the cryptographic
strength of QUIC. We continue to argue about compositional security of multi-stage protocols in general,
pointing out the importance of the new notion of (session-)key independence, and how this could be easily
integrated into QUIC.

Clearly, one of the next steps would be to analyze SSL/TLS with resumption as a multi-stage protocol.
This, however, would require to adapt the model first, because, as discussed earlier, SSL/TLS cannot even
be shown to be secure as a single-stage protocol in the Bellare–Rogaway sense. Another interesting aspect
would be to weaken the requirements for our compositional theorem, or to prove that the requirements
are indeed necessary.
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[DF11] Özgür Dagdelen and Marc Fischlin. Security analysis of the extended access control pro-
tocol for machine readable travel documents. In Mike Burmester, Gene Tsudik, Spyros S.

25

http://tuprints.ulb.tu-darmstadt.de/3414/


Magliveras, and Ivana Ilic, editors, ISC 2010: 13th International Conference on Information
Security, volume 6531 of Lecture Notes in Computer Science, pages 54–68, Boca Raton, FL,
USA, October 25–28, 2011. Springer, Heidelberg, Germany. (Cited on pages 19 and 20.)

[DR08] T. Dierks and E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.2. RFC
5246 (Proposed Standard), August 2008. Updated by RFCs 5746, 5878, 6176. (Cited on page 3.)

[FW09] Pooya Farshim and Bogdan Warinschi. Certified encryption revisited. In Bart Preneel, editor,
AFRICACRYPT 09: 2nd International Conference on Cryptology in Africa, volume 5580 of
Lecture Notes in Computer Science, pages 179–197, Gammarth, Tunisia, June 21–25, 2009.
Springer, Heidelberg, Germany. (Cited on page 18.)

[GKS13] Florian Giesen, Florian Kohlar, and Douglas Stebila. On the security of TLS renegotiation.
In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 13: 20th
Conference on Computer and Communications Security, pages 387–398, Berlin, Germany,
November 4–8, 2013. ACM Press. (Cited on page 3.)
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